Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Cell ; 174(3): 688-699.e16, 2018 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-29961577

RESUMEN

Proteins such as FUS phase separate to form liquid-like condensates that can harden into less dynamic structures. However, how these properties emerge from the collective interactions of many amino acids remains largely unknown. Here, we use extensive mutagenesis to identify a sequence-encoded molecular grammar underlying the driving forces of phase separation of proteins in the FUS family and test aspects of this grammar in cells. Phase separation is primarily governed by multivalent interactions among tyrosine residues from prion-like domains and arginine residues from RNA-binding domains, which are modulated by negatively charged residues. Glycine residues enhance the fluidity, whereas glutamine and serine residues promote hardening. We develop a model to show that the measured saturation concentrations of phase separation are inversely proportional to the product of the numbers of arginine and tyrosine residues. These results suggest it is possible to predict phase-separation properties based on amino acid sequences.


Asunto(s)
Proteína FUS de Unión a ARN/genética , Proteínas de Unión al ARN/fisiología , Secuencia de Aminoácidos , Aminoácidos/química , Animales , Arginina/química , Simulación por Computador , Células HeLa , Humanos , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/fisiología , Transición de Fase , Proteínas Priónicas/química , Proteínas Priónicas/genética , Priones/genética , Priones/fisiología , Dominios Proteicos , Proteína FUS de Unión a ARN/fisiología , Proteínas de Unión al ARN/aislamiento & purificación , Células Sf9 , Tirosina/química
2.
EMBO J ; 35(8): 803-19, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26929011

RESUMEN

A mutation in the centrosomal-P4.1-associated protein (CPAP) causes Seckel syndrome with microcephaly, which is suggested to arise from a decline in neural progenitor cells (NPCs) during development. However, mechanisms ofNPCs maintenance remain unclear. Here, we report an unexpected role for the cilium inNPCs maintenance and identifyCPAPas a negative regulator of ciliary length independent of its role in centrosome biogenesis. At the onset of cilium disassembly,CPAPprovides a scaffold for the cilium disassembly complex (CDC), which includes Nde1, Aurora A, andOFD1, recruited to the ciliary base for timely cilium disassembly. In contrast, mutatedCPAPfails to localize at the ciliary base associated with inefficientCDCrecruitment, long cilia, retarded cilium disassembly, and delayed cell cycle re-entry leading to premature differentiation of patientiPS-derivedNPCs. AberrantCDCfunction also promotes premature differentiation ofNPCs in SeckeliPS-derived organoids. Thus, our results suggest a role for cilia in microcephaly and its involvement during neurogenesis and brain size control.


Asunto(s)
Cilios/metabolismo , Microcefalia/patología , Proteínas Asociadas a Microtúbulos/metabolismo , Células-Madre Neurales/patología , Aurora Quinasa A/metabolismo , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Cilios/genética , Cilios/fisiología , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/patología , Células Madre Pluripotentes Inducidas/fisiología , Microcefalia/genética , Proteínas Asociadas a Microtúbulos/genética , Mutación , Células-Madre Neurales/metabolismo , Proteínas/metabolismo , Síndrome
3.
Nat Methods ; 11(5): 529-34, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24820376

RESUMEN

We have generated a recombinant Mos1 transposon that can insert up to 45-kb transgenes into the Caenorhabditis elegans genome. The minimal Mos1 transposon (miniMos) is 550 bp long and inserts DNA into the genome at high frequency (~60% of injected animals). Genetic and antibiotic markers can be used for selection, and the transposon is active in C. elegans isolates and Caenorhabditis briggsae. We used the miniMos transposon to generate six universal Mos1-mediated single-copy insertion (mosSCI) landing sites that allow targeted transgene insertion with a single targeting vector into permissive expression sites on all autosomes. We also generated two collections of strains: a set of bright fluorescent insertions that are useful as dominant, genetic balancers and a set of lacO insertions to track genome position.


Asunto(s)
Caenorhabditis elegans/genética , Elementos Transponibles de ADN/genética , Proteínas de Unión al ADN/genética , Transgenes , Transposasas/genética , Animales , Animales Modificados Genéticamente , Hibridación Genómica Comparativa , Biología Computacional , Ingeniería Genética/métodos , Marcadores Genéticos/genética , Proteínas Fluorescentes Verdes/metabolismo , Modelos Genéticos , Mutagénesis Insercional , Proteínas Recombinantes/metabolismo , Recombinación Genética
4.
Proc Natl Acad Sci U S A ; 111(3): E354-63, 2014 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-24385583

RESUMEN

Pericentriolar material (PCM) recruitment to centrioles forms a key step in centrosome biogenesis. Deregulation of this process leads to centrosome aberrations causing disorders, one of which is autosomal recessive primary microcephaly (MCPH), a neurodevelopmental disorder where brain size is reduced. During PCM recruitment, the conserved centrosomal protein Sas-4/CPAP/MCPH6, known to play a role in centriole formation, acts as a scaffold for cytoplasmic PCM complexes to bind and then tethers them to centrioles to form functional centrosomes. To understand Sas-4's tethering role, we determined the crystal structure of its T complex protein 10 (TCP) domain displaying a solvent-exposed single-layer of ß-sheets fold. This unique feature of the TCP domain suggests that it could provide an "extended surface-like" platform to tether the Sas-4-PCM scaffold to a centriole. Functional studies in Drosophila, human cells, and human induced pluripotent stem cell-derived neural progenitor cells were used to test this hypothesis, where point mutations within the 9-10th ß-strands (ß9-10 mutants including a MCPH-associated mutation) perturbed PCM tethering while allowing Sas-4/CPAP to scaffold cytoplasmic PCM complexes. Specifically, the Sas-4 ß9-10 mutants displayed perturbed interactions with Ana2, a centrosome duplication factor, and Bld-10, a centriole microtubule-binding protein, suggesting a role for the ß9-10 surface in mediating protein-protein interactions for efficient Sas-4-PCM scaffold centriole tethering. Hence, we provide possible insights into how centrosomal protein defects result in human MCPH and how Sas-4 proteins act as a vehicle to tether PCM complexes to centrioles independent of its well-known role in centriole duplication.


Asunto(s)
Centriolos/metabolismo , Centrosoma/metabolismo , Proteínas de Drosophila/metabolismo , Animales , Animales Modificados Genéticamente , Encéfalo/patología , Citoplasma/metabolismo , Drosophila melanogaster/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Masculino , Microcefalia/genética , Proteínas Asociadas a Microtúbulos , Modelos Moleculares , Mutación Puntual , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Testículo/metabolismo
5.
Proc Natl Acad Sci U S A ; 108(7): 2741-6, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21282620

RESUMEN

XMAP215/Dis1 family proteins positively regulate microtubule growth. Repeats at their N termini, called TOG domains, are important for this function. While TOG domains directly bind tubulin dimers, it is unclear how this interaction translates to polymerase activity. Understanding the functional roles of TOG domains is further complicated by the fact that the number of these domains present in the proteins of different species varies. Here, we take advantage of a recent crystal structure of the third TOG domain from Caenorhabditis elegans, Zyg9, and mutate key residues in each TOG domain of XMAP215 that are predicted to be important for interaction with the tubulin heterodimer. We determined the contributions of the individual TOG domains to microtubule growth. We show that the TOG domains are absolutely required to bind free tubulin and that the domains differentially contribute to XMAP215's overall affinity for free tubulin. The mutants' overall affinity for free tubulin correlates well with polymerase activity. Furthermore, we demonstrate that an additional basic region is important for targeting to the microtubule lattice and is critical for XMAP215 to function at physiological concentrations. Using this information, we have engineered a "bonsai" protein, with two TOG domains and a basic region, that has almost full polymerase activity.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimología , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/fisiología , Ingeniería de Proteínas/métodos , Estructura Terciaria de Proteína/fisiología , Tubulina (Proteína)/metabolismo , Animales , Secuencia de Bases , Proteínas de Caenorhabditis elegans/genética , Cromatografía en Gel , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/metabolismo , Datos de Secuencia Molecular , Mutagénesis , Polímeros/metabolismo , Estructura Terciaria de Proteína/genética
6.
J Cell Sci ; 123(Pt 9): 1395-400, 2010 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-20356927

RESUMEN

Germline mutations in the tumor-suppressor gene BRCA2 predispose to breast and ovarian cancer. BRCA2 plays a well-established role in maintaining genome stability by regulating homologous recombination. BRCA2 has more recently been implicated in cytokinesis, the final step of cell division, but the molecular basis for this remains unknown. We have used time-lapse microscopy, recently developed cytokinesis assays and BAC recombineering (bacterial artificial chromosome recombinogenic engineering) to investigate the function and localization of BRCA2 during cell division. Our analysis suggests that BRCA2 does not regulate cytokinesis in human cells. Thus, cytokinesis defects are unlikely to contribute to chromosomal instability and tumorigenesis in BRCA2-related cancers.


Asunto(s)
Proteína BRCA2/metabolismo , Citocinesis , Proteínas Reguladoras de la Apoptosis , Núcleo Celular/metabolismo , Cromosomas Artificiales Bacterianos/metabolismo , Marcación de Gen , Células HeLa , Humanos , Microtúbulos/metabolismo , ARN Interferente Pequeño/metabolismo , Recombinasa Rad51/metabolismo , Huso Acromático/metabolismo , Factores de Tiempo , Transfección
7.
Nat Methods ; 5(5): 409-15, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18391959

RESUMEN

The interpretation of genome sequences requires reliable and standardized methods to assess protein function at high throughput. Here we describe a fast and reliable pipeline to study protein function in mammalian cells based on protein tagging in bacterial artificial chromosomes (BACs). The large size of the BAC transgenes ensures the presence of most, if not all, regulatory elements and results in expression that closely matches that of the endogenous gene. We show that BAC transgenes can be rapidly and reliably generated using 96-well-format recombineering. After stable transfection of these transgenes into human tissue culture cells or mouse embryonic stem cells, the localization, protein-protein and/or protein-DNA interactions of the tagged protein are studied using generic, tag-based assays. The same high-throughput approach will be generally applicable to other model systems.


Asunto(s)
Cromosomas Artificiales Bacterianos/genética , Genómica/métodos , Mamíferos/genética , Mamíferos/metabolismo , Proteínas/metabolismo , Transgenes/genética , Animales , Antibacterianos/farmacología , Línea Celular , Resistencia a Medicamentos , Regulación de la Expresión Génica , Biblioteca de Genes , Ingeniería Genética , Genoma , Análisis por Matrices de Proteínas , Unión Proteica , Transporte de Proteínas , Proteínas/genética
8.
Life Sci Alliance ; 4(2)2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33293335

RESUMEN

Bacterial artificial chromosome (BAC)-based transgenes have emerged as a powerful tool for controlled and conditional interrogation of protein function in higher eukaryotes. Although homologous recombination-based recombineering methods have streamlined the efficient integration of protein tags onto BAC transgenes, generating precise point mutations has remained less efficient and time-consuming. Here, we present a simplified method for inserting point mutations into BAC transgenes requiring a single recombineering step followed by antibiotic selection. This technique, which we call exogenous/synthetic intronization (ESI) mutagenesis, relies on co-integration of a mutation of interest along with a selectable marker gene, the latter of which is harboured in an artificial intron adjacent to the mutation site. Cell lines generated from ESI-mutated BACs express the transgenes equivalently to the endogenous gene, and all cells efficiently splice out the synthetic intron. Thus, ESI mutagenesis provides a robust and effective single-step method with high precision and high efficiency for mutating BAC transgenes.


Asunto(s)
Cromosomas Artificiales Bacterianos , Mutagénesis Insercional/métodos , Transgenes , Línea Celular , Exones , Ingeniería Genética , Recombinación Homóloga , Humanos , Intrones , Fenotipo , Mutación Puntual
9.
J Cell Biol ; 168(2): 257-69, 2005 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-15657396

RESUMEN

Although programmed cell death (PCD) is extensively studied in multicellular organisms, in recent years it has been shown that a unicellular organism, yeast Saccharomyces cerevisiae, also possesses death program(s). In particular, we have found that a high doses of yeast pheromone is a natural stimulus inducing PCD. Here, we show that the death cascades triggered by pheromone and by a drug amiodarone are very similar. We focused on the role of mitochondria during the pheromone/amiodarone-induced PCD. For the first time, a functional chain of the mitochondria-related events required for a particular case of yeast PCD has been revealed: an enhancement of mitochondrial respiration and of its energy coupling, a strong increase of mitochondrial membrane potential, both events triggered by the rise of cytoplasmic [Ca2+], a burst in generation of reactive oxygen species in center o of the respiratory chain complex III, mitochondrial thread-grain transition, and cytochrome c release from mitochondria. A novel mitochondrial protein required for thread-grain transition is identified.


Asunto(s)
Amiodarona/farmacología , Apoptosis/fisiología , Mitocondrias/fisiología , Feromonas/farmacología , Saccharomyces cerevisiae/fisiología , Antifúngicos/farmacología , Antimicina A/farmacología , Apoptosis/efectos de los fármacos , Calcio/metabolismo , Carbonil Cianuro p-Trifluorometoxifenil Hidrazona/farmacología , Citocromos c/metabolismo , Fragmentación del ADN/efectos de los fármacos , Cinética , Factor de Apareamiento , Potenciales de la Membrana/efectos de los fármacos , Metacrilatos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/fisiología , Modelos Biológicos , Oxígeno/metabolismo , Péptidos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Tiazoles/farmacología
10.
Mol Biol Cell ; 18(6): 2336-45, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17429077

RESUMEN

The Chaperonin Containing Tcp1 (CCT) maintains cellular protein folding homeostasis in the eukaryotic cytosol by assisting the biogenesis of many proteins, including actins, tubulins, and regulators of the cell cycle. Here, we demonstrate that the essential and conserved eukaryotic phosducin-like protein 2 (PhLP2/PLP2) physically interacts with CCT and modulates its folding activity. Consistent with this functional interaction, temperature-sensitive alleles of Saccharomyces cerevisiae PLP2 exhibit cytoskeletal and cell cycle defects. We uncovered several high-copy suppressors of the plp2 alleles, all of which are associated with G1/S cell cycle progression but which do not appreciably affect cytoskeletal protein function or fully rescue the growth defects. Our data support a model in which Plp2p modulates the biogenesis of several CCT substrates relating to cell cycle and cytoskeletal function, which together contribute to the essential function of PLP2.


Asunto(s)
Proteínas Portadoras/metabolismo , Ciclo Celular/fisiología , Chaperoninas/metabolismo , Proteínas del Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Actinas/metabolismo , Alelos , Proteínas Portadoras/genética , Núcleo Celular/metabolismo , Chaperonina con TCP-1 , Chaperoninas/genética , Proteínas del Citoesqueleto/genética , Proteínas de Unión al GTP/metabolismo , Humanos , Microtúbulos/metabolismo , Proteínas del Tejido Nervioso/genética , Fenotipo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Temperatura
11.
Science ; 359(6371)2018 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-29301985

RESUMEN

Despite the important role of prion domains in neurodegenerative disease, their physiological function has remained enigmatic. Previous work with yeast prions has defined prion domains as sequences that form self-propagating aggregates. Here, we uncovered an unexpected function of the canonical yeast prion protein Sup35. In stressed conditions, Sup35 formed protective gels via pH-regulated liquid-like phase separation followed by gelation. Phase separation was mediated by the N-terminal prion domain and regulated by the adjacent pH sensor domain. Phase separation promoted yeast cell survival by rescuing the essential Sup35 translation factor from stress-induced damage. Thus, prion-like domains represent conserved environmental stress sensors that facilitate rapid adaptation in unstable environments by modifying protein phase behavior.


Asunto(s)
Factores de Terminación de Péptidos/metabolismo , Proteínas Priónicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico , Dominio Catalítico , Concentración de Iones de Hidrógeno , Factores de Terminación de Péptidos/química , Transición de Fase , Proteínas Priónicas/química , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/química
12.
Nat Commun ; 7: 11874, 2016 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-27306797

RESUMEN

Centrioles and cilia are microtubule-based structures, whose precise formation requires controlled cytoplasmic tubulin incorporation. How cytoplasmic tubulin is recognized for centriolar/ciliary-microtubule construction remains poorly understood. Centrosomal-P4.1-associated-protein (CPAP) binds tubulin via its PN2-3 domain. Here, we show that a C-terminal loop-helix in PN2-3 targets ß-tubulin at the microtubule outer surface, while an N-terminal helical motif caps microtubule's α-ß surface of ß-tubulin. Through this, PN2-3 forms a high-affinity complex with GTP-tubulin, crucial for defining numbers and lengths of centriolar/ciliary-microtubules. Surprisingly, two distinct mutations in PN2-3 exhibit opposite effects on centriolar/ciliary-microtubule lengths. CPAP(F375A), with strongly reduced tubulin interaction, causes shorter centrioles and cilia exhibiting doublet- instead of triplet-microtubules. CPAP(EE343RR) that unmasks the ß-tubulin polymerization surface displays slightly reduced tubulin-binding affinity inducing over-elongation of newly forming centriolar/ciliary-microtubules by enhanced dynamic release of its bound tubulin. Thus CPAP regulates delivery of its bound-tubulin to define the size of microtubule-based cellular structures using a 'clutch-like' mechanism.


Asunto(s)
Centriolos/metabolismo , Cilios/metabolismo , Proteínas Asociadas a Microtúbulos/química , Microtúbulos/metabolismo , Tubulina (Proteína)/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Bovinos , Centriolos/ultraestructura , Cilios/ultraestructura , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Células HeLa , Humanos , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Porcinos , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
13.
Science ; 348(6236): 808-12, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25977552

RESUMEN

The centrosome organizes microtubule arrays within animal cells and comprises two centrioles surrounded by an amorphous protein mass called the pericentriolar material (PCM). Despite the importance of centrosomes as microtubule-organizing centers, the mechanism and regulation of PCM assembly are not well understood. In Caenorhabditis elegans, PCM assembly requires the coiled-coil protein SPD-5. We found that recombinant SPD-5 could polymerize to form micrometer-sized porous networks in vitro. Network assembly was accelerated by two conserved regulators that control PCM assembly in vivo, Polo-like kinase-1 and SPD-2/Cep192. Only the assembled SPD-5 networks, and not unassembled SPD-5 protein, functioned as a scaffold for other PCM proteins. Thus, PCM size and binding capacity emerge from the regulated polymerization of one coiled-coil protein to form a porous network.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centrosoma/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Animales , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Centrosoma/diagnóstico por imagen , Redes y Vías Metabólicas , Fosforilación , Polimerizacion , Unión Proteica , Estructura Terciaria de Proteína , Ultrasonografía , Quinasa Tipo Polo 1
14.
Nat Cell Biol ; 15(9): 1116-22, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23974040

RESUMEN

Metaphase spindles are microtubule-based structures that use a multitude of proteins to modulate their morphology and function. Today, we understand many details of microtubule assembly, the role of microtubule-associated proteins, and the action of molecular motors. Ultimately, the challenge remains to understand how the collective behaviour of these nanometre-scale processes gives rise to a properly sized spindle on the micrometre scale. By systematically engineering the enzymatic activity of XMAP215, a processive microtubule polymerase, we show that Xenopus laevis spindle length increases linearly with microtubule growth velocity, whereas other parameters of spindle organization, such as microtubule density, lifetime and spindle shape, remain constant. We further show that mass balance can be used to link the global property of spindle size to individual microtubule dynamic parameters. We propose that spindle length is set by a balance of non-uniform nucleation and global microtubule disassembly in a liquid-crystal-like arrangement of microtubules.


Asunto(s)
Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Oocitos/metabolismo , Huso Acromático/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Animales , Anticuerpos Neutralizantes/farmacología , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes , Metafase/genética , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/antagonistas & inhibidores , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/genética , Microtúbulos/ultraestructura , Oocitos/ultraestructura , Huso Acromático/genética , Huso Acromático/ultraestructura , Porcinos , Transfección , Tubulina (Proteína)/metabolismo , Proteínas de Xenopus/antagonistas & inhibidores , Proteínas de Xenopus/genética , Xenopus laevis/genética , Xenopus laevis/crecimiento & desarrollo
15.
Methods Mol Biol ; 772: 445-58, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22065454

RESUMEN

Faithful gene activity reporters are a useful tool for evo-devo studies enabling selective introduction of specific loci between species and assaying the activity of large gene regulatory sequences. The use of large genomic constructs such as BACs and fosmids provides an efficient platform for exploration of gene function under endogenous regulatory control. Despite their large size they can be easily engineered using in vivo homologous recombination in Escherichia coli (recombineering). We have previously demonstrated that the efficiency and fidelity of recombineering are sufficient to allow high-throughput transgene engineering in liquid culture, and have successfully applied this approach in several model systems. Here, we present a detailed protocol for recombineering of BAC/fosmid transgenes for expression of fluorescent or affinity tagged proteins in Drosophila under endogenous in vivo regulatory control. The tag coding sequence is seamlessly recombineered into the genomic region contained in the BAC/fosmid clone, which is then integrated into the fly genome using ϕC31 recombination. This protocol can be easily adapted to other recombineering projects.


Asunto(s)
ADN/genética , Ingeniería Genética/métodos , Genoma/genética , Recombinación Homóloga/genética , Transgenes/genética , Animales , ADN/aislamiento & purificación , Drosophila/genética , Marcadores Genéticos , Vectores Genéticos/genética , Mutagénesis Insercional/genética , Plásmidos/genética , Reproducibilidad de los Resultados , Transformación Genética
16.
Curr Biol ; 21(15): 1259-67, 2011 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-21802300

RESUMEN

BACKGROUND: The ways in which cells set the size of intracellular structures is an important but largely unsolved problem [1]. Early embryonic divisions pose special problems in this regard. Many checkpoints common in somatic cells are missing from these divisions, which are characterized by rapid reductions in cell size and short cell cycles [2]. Embryonic cells must therefore possess simple and robust mechanisms that allow the size of many of their intracellular structures to rapidly scale with cell size. RESULTS: Here, we study the mechanism by which one structure, the centrosome, scales in size during the early embryonic divisions of C. elegans. We show that centrosome size is directly related to cell size and is independent of lineage. Two findings suggest that the total amount of maternally supplied centrosome proteins could limit centrosome size. First, the combined volume of all centrosomes formed at any one time in the developing embryo is constant. Second, the total volume of centrosomes in any one cell is independent of centrosome number. By increasing the amount of centrosome proteins in the cell, we provide evidence that one component that limits centrosome size is the conserved pericentriolar material protein SPD-2 [3], which we show binds to and targets polo-like kinase 1 [3, 4] to centrosomes. CONCLUSIONS: We propose a limiting component hypothesis, in which the volume of the cell sets centrosome size by limiting the total amount of centrosome components. This idea could be a general mechanism for setting the size of intracellular organelles during development.


Asunto(s)
Caenorhabditis elegans/embriología , Centrosoma , Embrión no Mamífero/metabolismo , Animales , Ciclo Celular , Tamaño de la Célula
17.
Science ; 328(5978): 593-9, 2010 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-20360068

RESUMEN

Chromosome segregation and cell division are essential, highly ordered processes that depend on numerous protein complexes. Results from recent RNA interference screens indicate that the identity and composition of these protein complexes is incompletely understood. Using gene tagging on bacterial artificial chromosomes, protein localization, and tandem-affinity purification-mass spectrometry, the MitoCheck consortium has analyzed about 100 human protein complexes, many of which had not or had only incompletely been characterized. This work has led to the discovery of previously unknown, evolutionarily conserved subunits of the anaphase-promoting complex and the gamma-tubulin ring complex--large complexes that are essential for spindle assembly and chromosome segregation. The approaches we describe here are generally applicable to high-throughput follow-up analyses of phenotypic screens in mammalian cells.


Asunto(s)
Segregación Cromosómica , Mitosis , Complejos Multiproteicos/metabolismo , Huso Acromático/metabolismo , Tubulina (Proteína)/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , Centrosoma/metabolismo , Cromosomas Artificiales Bacterianos , Bases de Datos Genéticas , Genómica , Proteínas Fluorescentes Verdes , Células HeLa , Humanos , Sistemas de Lectura Abierta , Unión Proteica , Mapeo de Interacción de Proteínas , Subunidades de Proteína/metabolismo , Interferencia de ARN
18.
Methods Cell Biol ; 85: 179-218, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18155464

RESUMEN

The Caenorhabditis elegans gonad and early embryo have recently emerged as an attractive metazoan model system for studying cell and developmental biology. The success of this system is attributable to the stereotypical architecture and reproducible cell divisions of the gonad/early embryo, coupled with penetrant RNAi-mediated protein depletion. These features have facilitated the development of visual assays with high spatiotemporal resolution to monitor specific subcellular processes. Assay development has relied heavily on the emergence of methods to circumvent germline silencing to allow the expression of transgenes encoding fluorescent fusion proteins. In this chapter, we discuss methods for the expression and imaging of fluorescent proteins in the C. elegans germline, including the design of transgenes for optimal expression, the generation of transgenic worm lines by ballistic bombardment, the construction of multimarker lines by mating, and methods for live imaging of the gonad and early embryo.


Asunto(s)
Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Embrión no Mamífero , Técnicas Genéticas , Proteínas Fluorescentes Verdes/genética , Proteínas Luminiscentes/genética , Animales , Animales Modificados Genéticamente , Regulación del Desarrollo de la Expresión Génica , Vectores Genéticos , Gónadas/embriología , Proteínas Fluorescentes Verdes/análisis , Intrones , Proteínas Luminiscentes/análisis , Proteínas Recombinantes de Fusión , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA