Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neuro Oncol ; 21(3): 337-347, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30476237

RESUMEN

BACKGROUND: Although considerable progress has been made in understanding molecular alterations driving gliomagenesis, the diverse metabolic programs contributing to the aggressive phenotype of glioblastoma remain unclear. The aim of this study was to define and provide molecular context to metabolic reprogramming driving gliomagenesis. METHODS: Integrative cross-platform analyses coupling global metabolomic profiling with genomics in patient-derived glioma (low-grade astrocytoma [LGA; n = 28] and glioblastoma [n = 80]) were performed. Identified programs were then metabolomically, genomically, and functionally evaluated in preclinical models. RESULTS: Clear metabolic programs were identified differentiating LGA from glioblastoma, with aberrant lipid, peptide, and amino acid metabolism representing dominant metabolic nodes associated with malignant transformation. Although the metabolomic profiles of glioblastoma and LGA appeared mutually exclusive, considerable metabolic heterogeneity was observed in glioblastoma. Surprisingly, integrative analyses demonstrated that O6-methylguanine-DNA methyltransferase methylation and isocitrate dehydrogenase mutation status were equally distributed among glioblastoma metabolic profiles. Transcriptional subtypes, on the other hand, tightly clustered by their metabolomic signature, with proneural and mesenchymal tumor profiles being mutually exclusive. Integrating these metabolic phenotypes with gene expression analyses uncovered tightly orchestrated and highly redundant transcriptional programs designed to support the observed metabolic programs by actively importing these biochemical substrates from the microenvironment, contributing to a state of enhanced metabolic heterotrophy. These findings were metabolomically, genomically, and functionally recapitulated in preclinical models. CONCLUSION: Despite disparate molecular pathways driving the progression of glioblastoma, metabolic programs designed to maintain its aggressive phenotype remain conserved. This contributes to a state of enhanced metabolic heterotrophy supporting survival in diverse microenvironments implicit in this malignancy.


Asunto(s)
Aminoácidos/metabolismo , Astrocitoma/metabolismo , Neoplasias Encefálicas/metabolismo , Carcinogénesis , Glioblastoma/metabolismo , Metabolismo de los Lípidos , Metabolómica , Astrocitoma/genética , Astrocitoma/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Reprogramación Celular , Metilación de ADN , Metilasas de Modificación del ADN/genética , Enzimas Reparadoras del ADN/genética , Perfilación de la Expresión Génica , Glioblastoma/genética , Glioblastoma/patología , Humanos , Isocitrato Deshidrogenasa/genética , Mutación , Clasificación del Tumor , Péptidos/metabolismo , Proteínas Supresoras de Tumor/genética
2.
Mol Cancer Ther ; 10(12): 2405-14, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21992793

RESUMEN

The purpose of this study was to determine the capacity of MK-1775, a potent Wee-1 inhibitor, to abrogate the radiation-induced G(2) checkpoint arrest and modulate radiosensitivity in glioblastoma cell models and normal human astrocytes. The radiation-induced checkpoint response of established glioblastoma cell lines, glioblastoma neural stem (GNS) cells, and astrocytes were determined in vitro by flow cytometry and in vivo by mitosis-specific staining using immunohistochemistry. Mechanisms underlying MK-1775 radiosensitization were determined by mitotic catastrophe and γH2AX expression. Radiosensitivity was determined in vitro by the clonogenic assay and in vivo by tumor growth delay. MK-1775 abrogated the radiation-induced G(2) checkpoint and enhanced radiosensitivity in established glioblastoma cell lines in vitro and in vivo, without modulating radiation response in normal human astrocytes. MK-1775 appeared to attenuate the early-phase of the G(2) checkpoint arrest in GNS cell lines, although the arrest was not sustained and did not lead to increased radiosensitivity. These results show that MK-1775 can selectively enhance radiosensitivity in established glioblastoma cell lines. Further work is required to determine the role Wee-1 plays in checkpoint activation of GNS cells.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de la radiación , Glioblastoma/tratamiento farmacológico , Pirazoles/uso terapéutico , Pirimidinas/uso terapéutico , Animales , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Proteínas de Ciclo Celular/antagonistas & inhibidores , Línea Celular Tumoral , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Ratones , Ratones Desnudos , Terapia Molecular Dirigida , Proteínas Nucleares/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacocinética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Pirazoles/farmacocinética , Pirazoles/farmacología , Pirimidinas/farmacocinética , Pirimidinas/farmacología , Pirimidinonas , Tolerancia a Radiación/efectos de los fármacos , Fármacos Sensibilizantes a Radiaciones/farmacocinética , Fármacos Sensibilizantes a Radiaciones/farmacología , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/efectos de la radiación , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA