Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 15(11): 7440-4, 2015 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-26426510

RESUMEN

Recently, there has been much interest in the extraction of hot electrons generated from surface plasmon decay, as this process can be used to achieve additional bandwidth for both photodetectors and photovoltaics. Hot electrons are typically injected into semiconductors over a Schottky barrier between the metal and semiconductor, enabling generation of photocurrent with below bandgap photon illumination. As a two-dimensional semiconductor single and few layer molybdenum disulfide (MoS2) has been demonstrated to exhibit internal photogain and therefore becomes an attractive hot electron acceptor. Here, we investigate hot electron-based photodetection in a device consisting of bilayer MoS2 integrated with a plasmonic antenna array. We demonstrate sub-bandgap photocurrent originating from the injection of hot electrons into MoS2 as well as photoamplification that yields a photogain of 10(5). The large photogain results in a photoresponsivity of 5.2 A/W at 1070 nm, which is far above similar silicon-based hot electron photodetectors in which no photoamplification is present. This technique is expected to have potential use in future ultracompact near-infrared photodetection and optical memory devices.

2.
Nano Lett ; 15(7): 4374-80, 2015 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-26027714

RESUMEN

We investigate near-field energy transfer between chemically synthesized quantum dots (QDs) and two-dimensional semiconductors. We fabricate devices in which electrostatically gated semiconducting monolayer molybdenum disulfide (MoS2) is placed atop a homogeneous self-assembled layer of core-shell CdSSe QDs. We demonstrate efficient nonradiative Förster resonant energy transfer (FRET) from QDs into MoS2 and prove that modest gate-induced variation in the excitonic absorption of MoS2 leads to large (∼500%) changes in the FRET rate. This in turn allows for up to ∼75% electrical modulation of QD photoluminescence intensity. The hybrid QD/MoS2 devices operate within a small voltage range, allow for continuous modification of the QD photoluminescence intensity, and can be used for selective tuning of QDs emitting in the visible-IR range.

3.
Langmuir ; 29(13): 4177-80, 2013 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-23506192

RESUMEN

We report the fabrication of a hybrid light-harvesting electrode consisting of photosystem I (PSI) proteins extracted from spinach and adsorbed as a monolayer onto electrically contacted, large-area graphene. The transparency of graphene supports the choice of an opaque mediator at elevated concentrations. For example, we report a photocurrent of 550 nA/cm(2) from a monolayer of PSI on graphene in the presence of 20 mM methylene blue, which yields an opaque blue solution. The PSI-modified graphene electrode has a total thickness of less than 10 nm and demonstrates photoactivity that is an order of magnitude larger than that for unmodified graphene, establishing the feasibility of conjoining these nanomaterials as potential constructs in next-generation photovoltaic devices.


Asunto(s)
Grafito/química , Complejo de Proteína del Fotosistema I/química , Adsorción , Electrodos , Procesos Fotoquímicos , Complejo de Proteína del Fotosistema I/aislamiento & purificación , Complejo de Proteína del Fotosistema I/metabolismo , Spinacia oleracea/enzimología , Propiedades de Superficie
4.
Nano Lett ; 11(11): 4748-52, 2011 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-21970515

RESUMEN

The remarkable mechanical properties of graphene, the thinnest, lightest, and strongest material in existence, are desirable in applications ranging from composite materials to sensors and actuators. Here, we demonstrate that these mechanical properties are strongly affected by the interaction with the substrate onto which graphene is deposited. By measuring the temperature-dependent deflection of graphene/substrate "bimetallic" cantilevers we determine strain, thermal expansion coefficient, and the adhesion force acting on graphene films attached to a substrate. Graphene deposited on silicon nitride (SiN(x)) is under much larger strain, ε(g) ∼ 1.5 × 10(-2), compared to graphene on gold (Au), ε(g) < 10(-3). The thermal expansion coefficient α(g) of graphene attached to SiN(x) is found to be negative, in the range from (- 5... - 1) × 10(-6)K(-1) and smaller in magnitude than α(g) of suspended graphene. We also estimate the interfacial shear strength of the graphene/SiN(x) interface to be ∼1 GPa at room temperature.


Asunto(s)
Grafito/química , Metales/química , Nanoestructuras/química , Nanoestructuras/ultraestructura , Módulo de Elasticidad , Ensayo de Materiales , Conformación Molecular , Tamaño de la Partícula , Estrés Mecánico , Propiedades de Superficie , Conductividad Térmica
5.
Sci Rep ; 8(1): 6093, 2018 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-29650985

RESUMEN

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

6.
Sci Rep ; 8(1): 768, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29335642

RESUMEN

We report a combined theoretical/experimental study of dynamic screening of excitons in media with frequency-dependent dielectric functions. We develop an analytical model showing that interparticle interactions in an exciton are screened in the range of frequencies from zero to the characteristic binding energy depending on the symmetries and transition energies of that exciton. The problem of the dynamic screening is then reduced to simply solving the Schrodinger equation with an effectively frequency-independent potential. Quantitative predictions of the model are experimentally verified using a test system: neutral, charged and defect-bound excitons in two-dimensional monolayer WS2, screened by metallic, liquid, and semiconducting environments. The screening-induced shifts of the excitonic peaks in photoluminescence spectra are in good agreement with our model.

7.
Nanoscale ; 8(28): 13730-9, 2016 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-27411950

RESUMEN

The organization and composition of the extracellular matrix (ECM) have been shown to impact the propagation of electrical signals in multiple tissue types. To date, many studies with electroactive biomaterial substrates have relied upon passive electrical stimulation of the ionic media to affect cell behavior. However, development of cell culture systems in which stimulation can be directly applied to the material - thereby isolating the signal to the cell-material interface and cell-cell contracts - would provide a more physiologically-relevant paradigm for investigating how electrical cues modulate lineage-specific stem cell differentiation. In the present study, we have employed unmodified, directly-stimulated, (un)patterned graphene as a cell culture substrate to investigate how extrinsic electrical cycling influences the differentiation of naïve human mesenchymal stem cells (hMSCs) without the bias of exogenous biochemicals. We first demonstrated that cyclic stimulation does not deteriorate the cell culture media or result in cytotoxic pH, which are critical experiments for correct interpretation of changes in cell behavior. We then measured how the expression of osteogenic and neurogenic lineage-specific markers were altered simply by exposure to electrical stimulation and/or physical patterns. Expression of the early osteogenic transcription factor RUNX2 was increased by electrical stimulation on all graphene substrates, but the mature marker osteopontin was only modulated when stimulation was combined with physical patterns. In contrast, the expression of the neurogenic markers MAP2 and ß3-tubulin were enhanced in all electrical stimulation conditions, and were less responsive to the presence of patterns. These data indicate that specific combinations of non-biological inputs - material type, electrical stimulation, physical patterns - can regulate hMSC lineage specification. This study represents a substantial step in understanding how the interplay of electrophysical stimuli regulate stem cell behavior and helps to clarify the potential for graphene substrates in tissue engineering applications.

8.
Nat Nanotechnol ; 9(6): 436-42, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24776648

RESUMEN

In the pursuit of ultrasmall electronic components, monolayer electronic devices have recently been fabricated using transition-metal dichalcogenides. Monolayers of these materials are semiconducting, but nanowires with stoichiometry MX (M = Mo or W, X = S or Se) have been predicted to be metallic. Such nanowires have been chemically synthesized. However, the controlled connection of individual nanowires to monolayers, an important step in creating a two-dimensional integrated circuit, has so far remained elusive. In this work, by steering a focused electron beam, we directly fabricate MX nanowires that are less than a nanometre in width and Y junctions that connect designated points within a transition-metal dichalcogenide monolayer. In situ electrical measurements demonstrate that these nanowires are metallic, so they may serve as interconnects in future flexible nanocircuits fabricated entirely from the same monolayer. Sequential atom-resolved Z-contrast images reveal that the nanowires rotate and flex continuously under momentum transfer from the electron beam, while maintaining their structural integrity. They therefore exhibit self-adaptive connections to the monolayer from which they are sculpted. We find that the nanowires remain conductive while undergoing severe mechanical deformations, thus showing promise for mechanically robust flexible electronics. Density functional theory calculations further confirm the metallicity of the nanowires and account for their beam-induced mechanical behaviour. These results show that direct patterning of one-dimensional conducting nanowires in two-dimensional semiconducting materials with nanometre precision is possible using electron-beam-based techniques.

9.
Nanoscale ; 5(10): 4171-6, 2013 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-23592029

RESUMEN

Graphene is a novel material whose application in biomedical sciences has only begun to be realized. In the present study, we have employed three-dimensional graphene foams as culture substrates for human mesenchymal stem cells and provide evidence that these materials can maintain stem cell viability and promote osteogenic differentiation.


Asunto(s)
Diferenciación Celular , Grafito/química , Células Madre Mesenquimatosas/metabolismo , Osteogénesis , Técnicas de Cultivo de Célula/métodos , Supervivencia Celular , Células Cultivadas , Humanos , Células Madre Mesenquimatosas/ultraestructura
10.
J Phys Chem B ; 117(6): 1664-9, 2013 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-22908936

RESUMEN

Monolayers of iron oxide nanoparticles of two different sizes, 9.6 nm and 16.5 nm, were fabricated through electrophoretic deposition. The arrangements of nanoparticles within the films were analyzed using the technique of Voronoi tessellations. These analyses indicated that the films possessed equivalent degrees of ordering, and that the films were uniform over centimeter length scales. Precise measurements of the interparticle spacing were obtained, and the magnitudes of magnetic dipole interactions were calculated. The dipole-dipole interaction among the larger nanoparticles was 14 times larger than that of the smaller nanoparticles, indicating that magnetic coupling interactions could not have been the lone source of ordering in the system.

11.
ACS Nano ; 6(2): 1102-8, 2012 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-22299572

RESUMEN

We report the use of atomically thin layers of graphene as a protective coating that inhibits corrosion of underlying metals. Here, we employ electrochemical methods to study the corrosion inhibition of copper and nickel by either growing graphene on these metals, or by mechanically transferring multilayer graphene onto them. Cyclic voltammetry measurements reveal that the graphene coating effectively suppresses metal oxidation and oxygen reduction. Electrochemical impedance spectroscopy measurements suggest that while graphene itself is not damaged, the metal under it is corroded at cracks in the graphene film. Finally, we use Tafel analysis to quantify the corrosion rates of samples with and without graphene coatings. These results indicate that copper films coated with graphene grown via chemical vapor deposition are corroded 7 times slower in an aerated Na(2)SO(4) solution as compared to the corrosion rate of bare copper. Tafel analysis reveals that nickel with a multilayer graphene film grown on it corrodes 20 times slower while nickel surfaces coated with four layers of mechanically transferred graphene corrode 4 times slower than bare nickel. These findings establish graphene as the thinnest known corrosion-protecting coating.


Asunto(s)
Técnicas Electroquímicas/métodos , Grafito/química , Cobre/química , Corrosión , Espectroscopía Dieléctrica , Fenómenos Mecánicos , Propiedades de Superficie , Volatilización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA