Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Bioorg Chem ; 151: 107646, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39032408

RESUMEN

Since the discovery of antimicrobial agents, the misuse of antibiotics has led to the emergence of bacterial strains resistant to both antibiotics and common disinfectants like quaternary ammonium compounds (QACs). A new class, 'gemini' QACs, which contain two polar heads, has shown promise. Octenidine (OCT), a representative of this group, is effective against resistant microorganisms but has limitations such as low solubility and high cytotoxicity. In this study, we developed 16 novel OCT derivatives. These compounds were subjected to in silico screening to predict their membrane permeation. Testing against nosocomial bacterial strains (G+ and G-) and their biofilms revealed that most compounds were highly effective against G+ bacteria, while compounds 7, 8, and 10-12 were effective against G- bacteria. Notably, compounds 6-8 were significantly more effective than OCT and BAC standards across the bacterial panel. Compound 12 stood out due to its low cytotoxicity and broad-spectrum antimicrobial activity, comparable to OCT. It also demonstrated impressive antifungal activity. Compound 1 was highly selective to fungi and four times more effective than OCT without its cytotoxicity. Several compounds, including 4, 6, 8, 9, 10, and 12, showed strong virucidal activity against murine cytomegalovirus and herpes simplex virus 1. In conclusion, these gemini QACs, especially compound 12, offer a promising alternative to current disinfectants, addressing emerging resistances with their enhanced antimicrobial, antifungal, and virucidal properties.


Asunto(s)
Antibacterianos , Pruebas de Sensibilidad Microbiana , Compuestos de Amonio Cuaternario , Compuestos de Amonio Cuaternario/farmacología , Compuestos de Amonio Cuaternario/síntesis química , Compuestos de Amonio Cuaternario/química , Relación Estructura-Actividad , Antibacterianos/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Animales , Estructura Molecular , Biopelículas/efectos de los fármacos , Antifúngicos/farmacología , Antifúngicos/síntesis química , Antifúngicos/química , Antivirales/farmacología , Antivirales/síntesis química , Antivirales/química , Relación Dosis-Respuesta a Droga , Humanos , Hongos/efectos de los fármacos , Bacterias/efectos de los fármacos , Piridinas/farmacología , Piridinas/química , Piridinas/síntesis química , Compuestos de Piridinio/farmacología , Compuestos de Piridinio/síntesis química , Compuestos de Piridinio/química , Ratones , Iminas
2.
Arch Toxicol ; 98(9): 2937-2952, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38789714

RESUMEN

Six novel brominated bis-pyridinium oximes were designed and synthesized to increase their nucleophilicity and reactivation ability of phosphorylated acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Their pKa was valuably found lower to parent non-halogenated oximes. Stability tests showed that novel brominated oximes were stable in water, but the stability of di-brominated oximes was decreased in buffer solution and their degradation products were prepared and characterized. The reactivation screening of brominated oximes was tested on AChE and BChE inhibited by organophosphorus surrogates. Two mono-brominated oximes reactivated AChE comparably to non-halogenated analogues, which was further confirmed by reactivation kinetics. The acute toxicity of two selected brominated oximes was similar to commercially available oxime reactivators and the most promising brominated oxime was tested in vivo on sarin- and VX-poisoned rats. This brominated oxime showed interesting CNS distribution and significant reactivation effectiveness in blood. The same oxime resulted with the best protective index for VX-poisoned rats.


Asunto(s)
Acetilcolinesterasa , Butirilcolinesterasa , Inhibidores de la Colinesterasa , Reactivadores de la Colinesterasa , Agentes Nerviosos , Compuestos Organotiofosforados , Oximas , Sarín , Animales , Oximas/farmacología , Oximas/química , Reactivadores de la Colinesterasa/farmacología , Reactivadores de la Colinesterasa/química , Inhibidores de la Colinesterasa/toxicidad , Inhibidores de la Colinesterasa/farmacología , Acetilcolinesterasa/metabolismo , Acetilcolinesterasa/efectos de los fármacos , Butirilcolinesterasa/metabolismo , Ratas , Masculino , Compuestos Organotiofosforados/toxicidad , Sarín/toxicidad , Agentes Nerviosos/toxicidad , Ratas Wistar , Halogenación , Sustancias para la Guerra Química/toxicidad , Compuestos de Piridinio/farmacología , Estabilidad de Medicamentos
3.
Int J Mol Sci ; 24(11)2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37298087

RESUMEN

Alzheimer's disease (AD) is a complex disease with an unknown etiology. Available treatments, limited to cholinesterase inhibitors and N-methyl-d-aspartate receptor (NMDAR) antagonists, provide symptomatic relief only. As single-target therapies have not proven effective, rational specific-targeted combination into a single molecule represents a more promising approach for treating AD, and is expected to yield greater benefits in alleviating symptoms and slowing disease progression. In the present study, we designed, synthesized, and biologically evaluated 24 novel N-methylpropargylamino-quinazoline derivatives. Initially, compounds were thoroughly inspected by in silico techniques determining their oral and CNS availabilities. We tested, in vitro, the compounds' effects on cholinesterases and monoamine oxidase A/B (MAO-A/B), as well as their impacts on NMDAR antagonism, dehydrogenase activity, and glutathione levels. In addition, we inspected selected compounds for their cytotoxicity on undifferentiated and differentiated neuroblastoma SH-SY5Y cells. We collectively highlighted II-6h as the best candidate endowed with a selective MAO-B inhibition profile, NMDAR antagonism, an acceptable cytotoxicity profile, and the potential to permeate through BBB. The structure-guided drug design strategy applied in this study imposed a novel concept for rational drug discovery and enhances our understanding on the development of novel therapeutic agents for treating AD.


Asunto(s)
Enfermedad de Alzheimer , Neuroblastoma , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Inhibidores de la Monoaminooxidasa/uso terapéutico , Neuroblastoma/tratamiento farmacológico , Inhibidores de la Colinesterasa/uso terapéutico , Monoaminooxidasa/metabolismo , Diseño de Fármacos , Acetilcolinesterasa/metabolismo , Relación Estructura-Actividad
4.
J Enzyme Inhib Med Chem ; 37(1): 760-767, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35193448

RESUMEN

The organophosphorus antidotes, so-called oximes, are able to restore the enzymatic function of acetylcholinesterase (AChE) or butyrylcholinesterase (BChE) via cleavage of organophosphate from the active site of the phosphylated enzyme. In this work, the charged pyridinium oximes containing thiocarboxamide moiety were designed, prepared and tested. Their stability and pKa properties were found to be analogous to parent carboxamides (K027, K048 and K203). The inhibitory ability of thiocarboxamides was found in low µM levels for AChE and high µM levels for BChE. Their reactivation properties were screened on human recombinant AChE and BChE inhibited by nerve agent surrogates and paraoxon. One thiocarboxamide was able to effectively restore function of NEMP- and NEDPA-AChE, whereas two thiocarboxamides were able to reactivate BChE inhibited by all tested organophosphates. These results were confirmed by reactivation kinetics, where thiocarboxamides were proved to be effective, but less potent reactivators if compared to carboxamides.


Asunto(s)
Inhibidores de la Colinesterasa/farmacología , Organofosfatos/farmacología , Oximas/farmacología , Compuestos de Piridinio/farmacología , Compuestos de Sulfhidrilo/farmacología , Acetilcolinesterasa/metabolismo , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Organofosfatos/síntesis química , Organofosfatos/química , Oximas/síntesis química , Oximas/química , Compuestos de Piridinio/síntesis química , Compuestos de Piridinio/química , Relación Estructura-Actividad , Compuestos de Sulfhidrilo/síntesis química , Compuestos de Sulfhidrilo/química
5.
Vet Res ; 52(1): 143, 2021 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-34895342

RESUMEN

Haemonchus contortus is a parasitic nematode of ruminants which causes significant losses to many farmers worldwide. Since the drugs currently in use for the treatment of haemonchosis are losing their effectiveness due to the drug-resistance of this nematode, a new or repurposed drug is highly needed. As the antipsychotic drug sertraline (SRT) has been shown to be effective against the parasitic nematodes Trichuris muris, Ancylostoma caninum and Schistosoma mansoni, the aim of the present study was to evaluate the possible effect of SRT on H. contortus. The potential hepatotoxicity of SRT was tested in sheep, a common H. contortus host. In addition, the main metabolic pathways of SRT in H. contortus and the ovine liver were identified. While no effect of SRT on H. contortus egg hatching was observed, SRT was found to significantly decrease the viability of H. contortus adults in drug-sensitive and resistant strains, with its effect comparable to the commonly used anthelmintics levamisole and monepantel. Moreover, SRT in anthelmintically active concentrations showed no toxicity to the ovine liver. Biotransformation of SRT in H. contortus was weak, with most of the drug remaining unmetabolized. Production of the main metabolite hydroxy-SRT did not differ significantly between strains. Other minor metabolites such as SRT-O-glucoside, dihydroxy-SRT, and SRT-ketone were also identified in H. contorts adults. Compared to H. contortus, the ovine liver metabolized SRT more extensively, mainly via desmethylation and glucuronidation. In conclusion, the potency of SRT against H. contortus was proven, and it should be tested further toward possible repurposing.


Asunto(s)
Antihelmínticos , Hemoncosis , Sertralina , Enfermedades de las Ovejas , Animales , Antihelmínticos/farmacología , Antihelmínticos/toxicidad , Biotransformación , Hemoncosis/tratamiento farmacológico , Hemoncosis/veterinaria , Haemonchus/efectos de los fármacos , Sertralina/farmacología , Sertralina/toxicidad , Ovinos , Enfermedades de las Ovejas/tratamiento farmacológico
6.
Bioorg Med Chem Lett ; 43: 128100, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33984470

RESUMEN

The search for novel and effective therapeutics for Alzheimer's disease (AD) is the main quest that remains to be resolved. The goal is to find a disease-modifying agent able to confront the multifactorial nature of the disease positively. Herewith, a family of huprineY-tryptophan heterodimers was prepared, resulting in inhibition of cholinesterase and neuronal nitric oxide synthase enzymes, with effect against amyloid-beta (Aß) and potential ability to cross the blood-brain barrier. Their cholinesterase pattern of behavior was inspected using kinetic analysis in tandem with docking studies. These heterodimers exhibited a promising pharmacological profile with strong implication in AD.


Asunto(s)
Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Aminoquinolinas/farmacología , Inhibidores de la Colinesterasa/farmacología , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Fármacos Neuroprotectores/farmacología , Triptófano/farmacología , Enfermedad de Alzheimer/metabolismo , Aminoquinolinas/química , Péptidos beta-Amiloides/antagonistas & inhibidores , Péptidos beta-Amiloides/metabolismo , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Relación Dosis-Respuesta a Droga , Compuestos Heterocíclicos de 4 o más Anillos/química , Humanos , Estructura Molecular , Fármacos Neuroprotectores/síntesis química , Fármacos Neuroprotectores/química , Relación Estructura-Actividad , Triptófano/química
7.
Bioorg Med Chem Lett ; 51: 128374, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34555506

RESUMEN

Alzheimers disease (AD) is the most common neurodegenerative disorder, characterized by neuronal loss and cognitive impairment. Currently, very few drugs are available for AD treatment, and a search for new therapeutics is urgently needed. Thus, in the current study, twenty-eight new derivatives of montanine-type Amaryllidaceae alkaloids were synthesized and evaluated for their ability to inhibit human recombinant acetylcholinesterase (hAChE) and butyrylcholinesterase (hBuChE). Three derivatives (1n, 1o, and 1p) with different substitution patterns demonstrated significant selective inhibitory potency for hAChE (IC50 < 5 µM), and one analog, 1v, showed selective hBuChE inhibition activity (IC50 = 1.73 ± 0.05 µM). The prediction of CNS availability, as disclosed by the BBB score, suggests that the active compounds in this survey should be able pass through the blood-brain barrier (BBB). Cytotoxicity screening and docking studies were carried out for the two most pronounced cholinesterase inhibitors, 1n and 1v.


Asunto(s)
Alcaloides/farmacología , Enfermedad de Alzheimer/tratamiento farmacológico , Inhibidores de la Colinesterasa/farmacología , Isoquinolinas/farmacología , Simulación del Acoplamiento Molecular , Acetilcolinesterasa/metabolismo , Alcaloides/síntesis química , Alcaloides/química , Enfermedad de Alzheimer/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Relación Dosis-Respuesta a Droga , Humanos , Isoquinolinas/síntesis química , Isoquinolinas/química , Estructura Molecular , Relación Estructura-Actividad
8.
Arch Toxicol ; 95(3): 985-1001, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33517499

RESUMEN

To date, the only treatments developed for poisoning by organophosphorus compounds, the most toxic chemical weapons of mass destruction, have exhibited limited efficacy and versatility. The available causal antidotes are based on reactivation of the enzyme acetylcholinesterase (AChE), which is rapidly and pseudo-irreversibly inhibited by these agents. In this study, we developed a novel series of monoquaternary reactivators combining permanently charged moieties tethered to position 6- of 3-hydroxypyridine-2-aldoxime reactivating subunit. Highlighted representatives (21, 24, and 27; also coded as K1371, K1374, and K1375, respectively) that contained 1-phenylisoquinolinium, 7-amino-1-phenylisoquinolinium and 4-carbamoylpyridinium moieties as peripheral anionic site ligands, respectively, showed efficacy superior or comparable to that of the clinically used standards. More importantly, these reactivators exhibited wide-spectrum efficacy and were minutely investigated via determination of their reactivation kinetics in parallel with molecular dynamics simulations to study their mechanisms of reactivation of the tabun-inhibited AChE conjugate. To further confirm the potential applicability of these candidates, a mouse in vivo assay was conducted. While K1375 had the lowest acute toxicity and the most suitable pharmacokinetic profile, the oxime K1374 with delayed elimination half-life was the most effective in ameliorating the signs of tabun toxicity. Moreover, both in vitro and in vivo, the versatility of the agents was substantially superior to that of clinically used standards. Their high efficacy and broad-spectrum capability make K1374 and K1375 promising candidates that should be further investigated for their potential as nerve agents and insecticide antidotes.


Asunto(s)
Acetilcolinesterasa/efectos de los fármacos , Antídotos/farmacología , Reactivadores de la Colinesterasa/farmacología , Acetilcolinesterasa/metabolismo , Animales , Antídotos/síntesis química , Antídotos/química , Reactivadores de la Colinesterasa/síntesis química , Reactivadores de la Colinesterasa/química , Femenino , Masculino , Ratones , Ratones Endogámicos BALB C , Simulación de Dinámica Molecular , Oximas/síntesis química , Oximas/química , Oximas/farmacología , Relación Estructura-Actividad
9.
Molecules ; 26(8)2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33918638

RESUMEN

Gastrointestinal side effects of donepezil, including dyspepsia, nausea, vomiting or diarrhea, occur in 20-30% of patients. The pathogenesis of these dysmotility associated disorders has not been fully clarified yet. Pharmacokinetic parameters of donepezil and its active metabolite 6-O-desmethyldonepezil were investigated in experimental pigs with and without small intestinal injury induced by dextran sodium sulfate (DSS). Morphological features of this injury were evaluated by a video capsule endoscopy. The effect of a single and repeated doses of donepezil on gastric myoelectric activity was assessed. Both DSS-induced small intestinal injury and prolonged small intestinal transit time caused higher plasma concentrations of donepezil in experimental pigs. This has an important implication for clinical practice in humans, with a need to reduce doses of the drug if an underlying gastrointestinal disease is present. Donepezil had an undesirable impact on porcine myoelectric activity. This effect was further aggravated by DSS-induced small intestinal injury. These findings can explain donepezil-associated dyspepsia in humans.


Asunto(s)
Donepezilo/farmacocinética , Tracto Gastrointestinal/patología , Tracto Gastrointestinal/fisiopatología , Indanos/metabolismo , Metaboloma , Complejo Mioeléctrico Migratorio , Piperidinas/metabolismo , Estómago/fisiopatología , Animales , Endoscopía Capsular , Sulfato de Dextran , Donepezilo/química , Donepezilo/farmacología , Femenino , Tracto Gastrointestinal/efectos de los fármacos , Metaboloma/efectos de los fármacos , Complejo Mioeléctrico Migratorio/efectos de los fármacos , Estómago/efectos de los fármacos , Porcinos
10.
Bioorg Chem ; 103: 104179, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32891860

RESUMEN

YNT-185 is the first known small molecule acting as orexin 2 receptor (OX2R) agonist with implication to narcolepsy treatment, served as a template scaffold in generating a small set of seven compounds with predictive affinity to OX2R. The design of the new small molecules was driven mostly by improving physicochemical properties of the parent drug YNT-185 in parallel with in silico studies, later suggesting their favorable binding modes within the active site of OX2R. We obtained seven new potential OX2R binders that were evaluated in vitro for their CNS availability, cytotoxicity, and behavior pattern on OX2R. Out of them, 15 emerged as the most potent modulator of OX2R, which, contrary to YNT-185, displayed inverse mode of action, i.e. antagonist profile. 15 was also submitted to an in vivo experiment revealing its ability to permeate through BBB into the brain with a short half-life.


Asunto(s)
Compuestos de Anilina/uso terapéutico , Benzamidas/uso terapéutico , Receptores de Orexina/uso terapéutico , Trastornos del Inicio y del Mantenimiento del Sueño/tratamiento farmacológico , Compuestos de Anilina/farmacología , Benzamidas/farmacología , Humanos , Estructura Molecular
11.
Int J Mol Sci ; 21(6)2020 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-32192199

RESUMEN

Human 17ß-hydroxysteroid dehydrogenase type 10 is a multifunctional protein involved in many enzymatic and structural processes within mitochondria. This enzyme was suggested to be involved in several neurological diseases, e.g., mental retardation, Parkinson's disease, or Alzheimer's disease, in which it was shown to interact with the amyloid-beta peptide. We prepared approximately 60 new compounds based on a benzothiazolyl scaffold and evaluated their inhibitory ability and mechanism of action. The most potent inhibitors contained 3-chloro and 4-hydroxy substitution on the phenyl ring moiety, a small substituent at position 6 on the benzothiazole moiety, and the two moieties were connected via a urea linker (4at, 4bb, and 4bg). These compounds exhibited IC50 values of 1-2 µM and showed an uncompetitive mechanism of action with respect to the substrate, acetoacetyl-CoA. These uncompetitive benzothiazolyl inhibitors of 17ß-hydroxysteroid dehydrogenase type 10 are promising compounds for potential drugs for neurodegenerative diseases that warrant further research and development.


Asunto(s)
3-Hidroxiacil-CoA Deshidrogenasas/antagonistas & inhibidores , Benzotiazoles/química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Urea/química , Urea/farmacología , 3-Hidroxiacil-CoA Deshidrogenasas/química , Enfermedad de Alzheimer/tratamiento farmacológico , Activación Enzimática , Humanos , Cinética , Estructura Molecular , Proteínas Recombinantes , Relación Estructura-Actividad
12.
Molecules ; 25(9)2020 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-32403238

RESUMEN

Nosocomial infections, which greatly increase morbidity among hospitalized patients, together with growing antibiotic resistance still encourage many researchers to search for novel antimicrobial compounds. Picolinium salts with different lengths of alkyl chains (C12, C14, C16) were prepared by Menshutkin-like reaction and evaluated with respect to their biological activity, i.e., lipophilicity and critical micellar concentration. Picolinium salts with C14 and C16 side chains achieved similar or even better results when in terms of antimicrobial efficacy than benzalkoniums; notably, their fungicidal efficiency was substantially more potent. The position of the methyl substituent on the aromatic ring does not seem to affect antimicrobial activity, in contrast to the effect of length of the N-alkyl chain. Concurrently, picolinium salts exhibited satisfactory low cytotoxicity against mammalian cells, i.e., lower than that of benzalkonium compounds, which are considered as safe.


Asunto(s)
Antibacterianos/farmacología , Antiinfecciosos/farmacología , Antivirales/farmacología , Ácidos Picolínicos/química , Ácidos Picolínicos/farmacología , Compuestos de Amonio Cuaternario/química , Animales , Células CHO , Candida/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cricetulus , Hongos/efectos de los fármacos , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Herpesvirus Humano 3/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Ácidos Picolínicos/síntesis química , Compuestos de Amonio Cuaternario/farmacología , Relación Estructura-Actividad , Tensoactivos/química , Tensoactivos/farmacología
13.
Molecules ; 25(3)2020 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-31991816

RESUMEN

The increasing risk of radiation exposure underlines the need for novel radioprotective agents. Hence, a series of novel 1-(2-hydroxyethyl)piperazine derivatives were designed and synthesized. Some of the compounds protected human cells against radiation-induced apoptosis and exhibited low cytotoxicity. Compared to the previous series of piperazine derivatives, compound 8 exhibited a radioprotective effect on cell survival in vitro and low toxicity in vivo. It also enhanced the survival of mice 30 days after whole-body irradiation (although this increase was not statistically significant). Taken together, our in vitro and in vivo data indicate that some of our compounds are valuable for further research as potential radioprotectors.


Asunto(s)
Piperazinas/química , Piperazinas/farmacología , Protectores contra Radiación/química , Protectores contra Radiación/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Relación Dosis-Respuesta a Droga , Humanos , Dosis Máxima Tolerada , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Piperazinas/administración & dosificación , Piperazinas/efectos adversos , Radiación Ionizante , Protectores contra Radiación/administración & dosificación , Protectores contra Radiación/efectos adversos , Relación Estructura-Actividad , Análisis de Supervivencia
14.
Bioorg Chem ; 82: 204-210, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30326402

RESUMEN

We report the design, synthesis and biological evaluation of 17 novel 8-aryl-2-morpholino-3,4-dihydroquinazoline derivatives based on the standard model of DNA-PK and PI3K inhibitors. Novel compounds are sub-divided into two series where the second series of five derivatives was designed to have a better solubility profile over the first one. A combination of in vitro and in silico techniques suggested a plausible synergistic effect with doxorubicin of the most potent compound 14d on cell proliferation via DNA-PK and poly(ADP-ribose) polymerase-1 (PARP-1) inhibition, while alone having a negligible effect on cell proliferation.


Asunto(s)
Antineoplásicos/farmacología , Doxorrubicina/farmacología , Inhibidores Enzimáticos/farmacología , Morfolinas/farmacología , Quinazolinonas/farmacología , Animales , Animales no Consanguíneos , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Proteína Quinasa Activada por ADN/antagonistas & inhibidores , Diseño de Fármacos , Sinergismo Farmacológico , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/toxicidad , Femenino , Células HT29 , Humanos , Ratones , Morfolinas/síntesis química , Morfolinas/toxicidad , Proteínas Nucleares/antagonistas & inhibidores , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Quinazolinonas/síntesis química , Quinazolinonas/toxicidad
15.
Xenobiotica ; 46(2): 132-40, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26153440

RESUMEN

1. Giant liver fluke Fascioloides magna is a dangerous parasite, which infects herbivores. It was imported to Europe from North America and started to spread. Benzimidazoles like albendazole, mebendazole, triclabendazole and salicylanilides closantel and rafoxanide are the most used anthelmintics to control fascioloidosis. However their effect might be altered via drug-metabolizing enzymes of this parasite. 2. The aim of our study was to determine the activities of drug-metabolizing enzymes in F. magna and the metabolism of above mentioned anthelmintics. 3. Activities of several oxidative, reductive and conjugative enzymes towards various model xenobiotic substrates were found in F. magna subcellular fractions. 4. Subcellular fractions from F. magna oxidized albendazole to its sulphoxide metabolite and reduced mebendazole to hydroxyl-mebendazole. Under ex vivo conditions, only very-low concentrations of these compounds were detected using high-performance liquid chromatography/mass spectrometry. 5. The results indicate that the giant liver fluke possesses the active xenobiotic-metabolizing system. The overexpression of this system may play an important role in parasite resistance against these anthelmintics.


Asunto(s)
Bencimidazoles/metabolismo , Fasciola hepatica/enzimología , Xenobióticos/metabolismo , Albendazol/metabolismo , Animales , Antihelmínticos/metabolismo , Cromatografía Líquida de Alta Presión , Fasciola hepatica/efectos de los fármacos , Mebendazol/metabolismo , Rafoxanida/metabolismo , Salicilanilidas/metabolismo , Sulfóxidos/metabolismo , Triclabendazol
16.
Parasitology ; 142(5): 648-59, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25373326

RESUMEN

The sheep tapeworm Moniezia expansa is very common parasite, which affects ruminants such as sheep, goats as well as other species. The benzimidazole anthelmintics albendazole (ABZ), flubendazole (FLU) and mebendazole (MBZ) are often used to treat the infection. The drug-metabolizing enzymes of helminths may alter the potency of anthelmintic treatment. The aim of our study was to assess the activity of the main drug-metabolizing enzymes and evaluate the metabolism of selected anthelmintics (ABZ, MBZ and FLU) in M. expansa. Activities of biotransformation enzymes were determined in subcellular fractions. Metabolites of the anthelmintics were detected and identified using high performance liquid chromatography/ultra-violet/VIS/fluorescence or ultra-high performance liquid chromatography/mass spectrometry. Reduction of MBZ, FLU and oxidation of ABZ were proved as well as activities of various metabolizing enzymes. Despite the fact that the conjugation enzymes glutathione S-transferase, UDP-glucuronosyl transferase and UDP-glucosyl transferase were active in vitro, no conjugated metabolites of anthelmintics were identified either ex vivo or in vitro. The obtained results indicate that sheep tapeworm is able to deactivate the administered anthelmintics, and thus protects itself against their action.


Asunto(s)
Albendazol/farmacocinética , Antihelmínticos/farmacocinética , Cestodos/enzimología , Mebendazol/análogos & derivados , Mebendazol/farmacocinética , Albendazol/farmacología , Oxidorreductasas de Alcohol/metabolismo , Animales , Antihelmínticos/farmacología , Biotransformación , Catalasa/metabolismo , Cestodos/efectos de los fármacos , Cestodos/ultraestructura , Sistema Enzimático del Citocromo P-450/metabolismo , Glucuronosiltransferasa/metabolismo , Glutatión Transferasa/metabolismo , Intestino Delgado/parasitología , Isoenzimas/metabolismo , Mebendazol/farmacología , Oxigenasas de Función Mixta/metabolismo , Monieziasis/parasitología , Complejos Multienzimáticos/metabolismo , NADH NADPH Oxidorreductasas/metabolismo , Oxidación-Reducción , Peroxidasa/metabolismo , Ovinos , Enfermedades de las Ovejas/parasitología , Superóxido Dismutasa/metabolismo
17.
RSC Med Chem ; 15(8): 2855-2866, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39149108

RESUMEN

The increasing threat of nuclear incidents and the widespread use of ionizing radiation (IR) in medical treatments underscore the urgent need for effective radiation countermeasures. Despite the availability of compounds such as amifostine, their clinical utility is significantly limited by adverse side effects and logistical challenges in administration. This study focuses on the synthesis and evaluation of novel piperazine derivatives as potential radioprotective agents, with the aim of overcoming the limitations associated with current countermeasures. We designed, synthesized, and evaluated a series of 1-(2-hydroxyethyl)piperazine derivatives. The compounds were assessed for cytotoxicity across a panel of human cell lines, and for their radioprotective effects in the MOLT-4 lymphoblastic leukemia cell line and in peripheral blood mononuclear cells (PBMCs) exposed to gamma radiation. The radioprotective efficacy was further quantified using the dicentric chromosome assay (DCA) to measure DNA damage mitigation. Among the synthesized derivatives, compound 6 demonstrated the most significant radioprotective effects in vitro, with minimal cytotoxicity across the tested cell lines. Compound 3 also showed notable efficacy, particularly in reducing dicentric chromosomes, thus indicating its potential to mitigate DNA damage from IR. Both compounds exhibited superior safety profiles and effectiveness compared to amifostine, suggesting their potential as more viable radioprotective agents. This study highlights the development of novel piperazine derivatives with promising radioprotective properties. Compound 6 emerged as the leading candidate, offering an optimal balance between efficacy and safety, with compound 3 also displaying significant potential. These findings support the further development and clinical evaluation of these compounds as safer, and more effective radiation countermeasures.

18.
Chem Biol Interact ; 394: 110941, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38493910

RESUMEN

The current study imposes a new class of organophosphorus (OP)-inhibited cholinesterase reactivators by conceptualizing a family of asymmetric bisoximes with various reactivating scaffolds. Several novel nucleophilic warheads were investigated, putting forward 29 novel reactivating options, by evaluating their nucleophilicity and ability to directly decompose OP compounds. Adopting the so-called zwitterionic strategy, 17 mono-oxime and nine bisoxime reactivators were discovered with major emphasis on the bifunctional-moiety approach. Compounds were compared with clinically used standards and other known experimentally highlighted reactivators. Our results clearly favor the concept of asymmetric bisoximes as leading reactivators in terms of efficacy and versatility. These top-ranked compounds were characterized in detail by reactivation kinetics parameters and evaluated for potential CNS availability. The highlighted molecules 55, 57, and 58 with various reactivating warheads, surpassed the reactivating potency of pralidoxime and several notable uncharged reactivators. The versatility of lead drug candidate 55 was also inspected on OP-inhibited butyrylcholinesterase, revealing a much higher rate compared to existing clinical antidotes.


Asunto(s)
Butirilcolinesterasa , Reactivadores de la Colinesterasa , Intoxicación por Organofosfatos , Oximas , Oximas/química , Oximas/farmacología , Reactivadores de la Colinesterasa/química , Reactivadores de la Colinesterasa/farmacología , Butirilcolinesterasa/metabolismo , Butirilcolinesterasa/química , Humanos , Intoxicación por Organofosfatos/tratamiento farmacológico , Acetilcolinesterasa/metabolismo , Antídotos/química , Antídotos/farmacología , Cinética , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Animales , Compuestos Organofosforados/química
19.
Biomed Pharmacother ; 173: 116399, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38492439

RESUMEN

The search for novel drugs to address the medical needs of Alzheimer's disease (AD) is an ongoing process relying on the discovery of disease-modifying agents. Given the complexity of the disease, such an aim can be pursued by developing so-called multi-target directed ligands (MTDLs) that will impact the disease pathophysiology more comprehensively. Herewith, we contemplated the therapeutic efficacy of an amiridine drug acting as a cholinesterase inhibitor by converting it into a novel class of novel MTDLs. Applying the linking approach, we have paired amiridine as a core building block with memantine/adamantylamine, trolox, and substituted benzothiazole moieties to generate novel MTDLs endowed with additional properties like N-methyl-d-aspartate (NMDA) receptor affinity, antioxidant capacity, and anti-amyloid properties, respectively. The top-ranked amiridine-based compound 5d was also inspected by in silico to reveal the butyrylcholinesterase binding differences with its close structural analogue 5b. Our study provides insight into the discovery of novel amiridine-based drugs by broadening their target-engaged profile from cholinesterase inhibitors towards MTDLs with potential implications in AD therapy.


Asunto(s)
Enfermedad de Alzheimer , Inhibidores de la Colinesterasa , Humanos , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/uso terapéutico , Inhibidores de la Colinesterasa/química , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Butirilcolinesterasa/metabolismo , Aminoquinolinas/uso terapéutico , Acetilcolinesterasa/metabolismo , Ligandos
20.
Eur J Med Chem ; 266: 116130, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38218127

RESUMEN

Tacrine (THA), a long withdrawn drug, is still a popular scaffold used in medicinal chemistry, mainly for its good reactivity and multi-targeted effect. However, THA-associated hepatotoxicity is still an issue and must be considered in drug discovery based on the THA scaffold. Following our previously identified hit compound 7-phenoxytacrine (7-PhO-THA), we systematically explored the chemical space with 30 novel derivatives, with a focus on low hepatotoxicity, anticholinesterase action, and antagonism at the GluN1/GluN2B subtype of the NMDA receptor. Applying the down-selection process based on in vitro and in vivo pharmacokinetic data, two candidates, I-52 and II-52, selective GluN1/GluN2B inhibitors thanks to the interaction with the ifenprodil-binding site, have entered in vivo pharmacodynamic studies. Finally, compound I-52, showing only minor affinity to AChE, was identified as a lead candidate with favorable behavioral and neuroprotective effects using open-field and prepulse inhibition tests, along with scopolamine-based behavioral and NMDA-induced hippocampal lesion models. Our data show that compound I-52 exhibits low toxicity often associated with NMDA receptor ligands, and low hepatotoxicity, often related to THA-based compounds.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad Hepática Inducida por Sustancias y Drogas , Fármacos Neuroprotectores , Piperidinas , Humanos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Receptores de N-Metil-D-Aspartato , Tacrina/química , Inhibidores de la Colinesterasa/química , Sitios de Unión , Colinesterasas , Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA