Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nature ; 608(7922): 429-435, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35922510

RESUMEN

Bacteria encode myriad defences that target the genomes of infecting bacteriophage, including restriction-modification and CRISPR-Cas systems1. In response, one family of large bacteriophages uses a nucleus-like compartment to protect its replicating genomes by excluding host defence factors2-4. However, the principal composition and structure of this compartment remain unknown. Here we find that the bacteriophage nuclear shell assembles primarily from one protein, which we name chimallin (ChmA). Combining cryo-electron tomography of nuclear shells in bacteriophage-infected cells and cryo-electron microscopy of a minimal chimallin compartment in vitro, we show that chimallin self-assembles as a flexible sheet into closed micrometre-scale compartments. The architecture and assembly dynamics of the chimallin shell suggest mechanisms for its nucleation and growth, and its role as a scaffold for phage-encoded factors mediating macromolecular transport, cytoskeletal interactions, and viral maturation.


Asunto(s)
Bacterias , Bacteriófagos , Compartimento Celular , Proteínas Virales , Ensamble de Virus , Bacterias/citología , Bacterias/inmunología , Bacterias/metabolismo , Bacterias/virología , Bacteriófagos/química , Bacteriófagos/inmunología , Bacteriófagos/fisiología , Bacteriófagos/ultraestructura , Microscopía por Crioelectrón , Proteínas Virales/química , Proteínas Virales/metabolismo , Proteínas Virales/ultraestructura
2.
Proc Natl Acad Sci U S A ; 121(19): e2321190121, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38687783

RESUMEN

Targeting proteins to specific subcellular destinations is essential in prokaryotes, eukaryotes, and the viruses that infect them. Chimalliviridae phages encapsulate their genomes in a nucleus-like replication compartment composed of the protein chimallin (ChmA) that excludes ribosomes and decouples transcription from translation. These phages selectively partition proteins between the phage nucleus and the bacterial cytoplasm. Currently, the genes and signals that govern selective protein import into the phage nucleus are unknown. Here, we identify two components of this protein import pathway: a species-specific surface-exposed region of a phage intranuclear protein required for nuclear entry and a conserved protein, PicA (Protein importer of chimalliviruses A), that facilitates cargo protein trafficking across the phage nuclear shell. We also identify a defective cargo protein that is targeted to PicA on the nuclear periphery but fails to enter the nucleus, providing insight into the mechanism of nuclear protein trafficking. Using CRISPRi-ART protein expression knockdown of PicA, we show that PicA is essential early in the chimallivirus replication cycle. Together, our results allow us to propose a multistep model for the Protein Import Chimallivirus pathway, where proteins are targeted to PicA by amino acids on their surface and then licensed by PicA for nuclear entry. The divergence in the selectivity of this pathway between closely related chimalliviruses implicates its role as a key player in the evolutionary arms race between competing phages and their hosts.


Asunto(s)
Bacteriófagos , Núcleo Celular , Transporte de Proteínas , Proteínas Virales , Proteínas Virales/metabolismo , Proteínas Virales/genética , Bacteriófagos/metabolismo , Bacteriófagos/genética , Núcleo Celular/metabolismo , Replicación Viral
3.
Curr Opin Microbiol ; 79: 102457, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38581914

RESUMEN

Nucleus-forming phages (chimalliviruses) encode numerous genes responsible for creating intricate structures for viral replication. Research on this newly appreciated family of phages has begun to reveal the mechanisms underlying the subcellular organization of the nucleus-based phage replication cycle. These discoveries include the structure of the phage nuclear shell, the identification of a membrane-bound early phage infection intermediate, the dynamic localization of phage RNA polymerases, the phylogeny and core genome of chimalliviruses, and the variation in replication mechanisms across diverse nucleus-forming phages. This research is being propelled forward through the application of fluorescence microscopy and cryo-electron microscopy and the innovative use of new tools such as proximity labeling and RNA-targeting Clustered Regularly Interspaced Short Palindromic Repeats-Cas systems.


Asunto(s)
Replicación Viral , Genoma Viral , Bacteriófagos/genética , Bacteriófagos/fisiología , Bacteriófagos/ultraestructura , Núcleo Celular/virología , Núcleo Celular/genética , Núcleo Celular/metabolismo , Filogenia , Proteínas Virales/genética , Proteínas Virales/metabolismo , Microscopía por Crioelectrón
4.
bioRxiv ; 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38766163

RESUMEN

As nucleus-forming phages become better characterized, understanding their unifying similarities and unique differences will help us understand how they occupy varied niches and infect diverse hosts. All identified nucleus-forming phages fall within the proposed Chimalliviridae family and share a core genome of 68 unique genes including chimallin, the major nuclear shell protein. A well-studied but non-essential protein encoded by many nucleus-forming phages is PhuZ, a tubulin homolog which aids in capsid migration, nucleus rotation, and nucleus positioning. One clade that represents 24% of all currently known chimalliviruses lacks a PhuZ homolog. Here we show that Erwinia phage Asesino, one member of this PhuZ-less clade, shares a common overall replication mechanism with other characterized nucleus-forming phages despite lacking PhuZ. We show that Asesino replicates via a phage nucleus that encloses phage DNA and partitions proteins in the nuclear compartment and cytoplasm in a manner similar to previously characterized nucleus-forming phages. Consistent with a lack of PhuZ, however, we did not observe active positioning or rotation of the phage nucleus within infected cells. These data show that some nucleus-forming phages have evolved to replicate efficiently without PhuZ, providing an example of a unique variation in the nucleus-based replication pathway.

5.
Science ; 385(6704): 105-112, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38963841

RESUMEN

Introns containing homing endonucleases are widespread in nature and have long been assumed to be selfish elements that provide no benefit to the host organism. These genetic elements are common in viruses, but whether they confer a selective advantage is unclear. In this work, we studied intron-encoded homing endonuclease gp210 in bacteriophage ΦPA3 and found that it contributes to viral competition by interfering with the replication of a coinfecting phage, ΦKZ. We show that gp210 targets a specific sequence in ΦKZ, which prevents the assembly of progeny viruses. This work demonstrates how a homing endonuclease can be deployed in interference competition among viruses and provide a relative fitness advantage. Given the ubiquity of homing endonucleases, this selective advantage likely has widespread evolutionary implications in diverse plasmid and viral competition as well as virus-host interactions.


Asunto(s)
Endonucleasas , Intrones , Fagos Pseudomonas , Pseudomonas aeruginosa , Interferencia Viral , Proteínas Virales , Endonucleasas/metabolismo , Endonucleasas/genética , Interferencia Viral/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo , Ensamble de Virus , Replicación Viral , Fagos Pseudomonas/enzimología , Fagos Pseudomonas/genética , Pseudomonas aeruginosa/virología
6.
bioRxiv ; 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38562762

RESUMEN

Targeting proteins to specific subcellular destinations is essential in prokaryotes, eukaryotes, and the viruses that infect them. Chimalliviridae phages encapsulate their genomes in a nucleus-like replication compartment composed of the protein chimallin (ChmA) that excludes ribosomes and decouples transcription from translation. These phages selectively partition proteins between the phage nucleus and the bacterial cytoplasm. Currently, the genes and signals that govern selective protein import into the phage nucleus are unknown. Here we identify two components of this novel protein import pathway: a species-specific surface-exposed region of a phage intranuclear protein required for nuclear entry and a conserved protein, PicA, that facilitates cargo protein trafficking across the phage nuclear shell. We also identify a defective cargo protein that is targeted to PicA on the nuclear periphery but fails to enter the nucleus, providing insight into the mechanism of nuclear protein trafficking. Using CRISPRi-ART protein expression knockdown of PicA, we show that PicA is essential early in the chimallivirus replication cycle. Together our results allow us to propose a multistep model for the Protein Import Chimallivirus (PIC) pathway, where proteins are targeted to PicA by amino acids on their surface, and then licensed by PicA for nuclear entry. The divergence in the selectivity of this pathway between closely-related chimalliviruses implicates its role as a key player in the evolutionary arms race between competing phages and their hosts. Significance Statement: The phage nucleus is an enclosed replication compartment built by Chimalliviridae phages that, similar to the eukaryotic nucleus, separates transcription from translation and selectively imports certain proteins. This allows the phage to concentrate proteins required for DNA replication and transcription while excluding DNA-targeting host defense proteins. However, the mechanism of selective trafficking into the phage nucleus is currently unknown. Here we determine the region of a phage nuclear protein that targets it for nuclear import and identify a conserved, essential nuclear shell-associated protein that plays a key role in this process. This work provides the first mechanistic model of selective import into the phage nucleus.

7.
bioRxiv ; 2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37808663

RESUMEN

Mobile introns containing homing endonucleases are widespread in nature and have long been assumed to be selfish elements that provide no benefit to the host organism. These genetic elements are common in viruses, but whether they confer a selective advantage is unclear. Here we studied a mobile intron in bacteriophage ΦPA3 and found its homing endonuclease gp210 contributes to viral competition by interfering with the virogenesis of co-infecting phage ΦKZ. We show that gp210 targets a specific sequence in its competitor ΦKZ, preventing the assembly of progeny viruses. This work reports the first demonstration of how a mobile intron can be deployed to engage in interference competition and provide a reproductive advantage. Given the ubiquity of introns, this selective advantage likely has widespread evolutionary implications in nature.

8.
bioRxiv ; 2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36865095

RESUMEN

We recently discovered that some bacteriophages establish a nucleus-like replication compartment (phage nucleus), but the core genes that define nucleus-based phage replication and their phylogenetic distribution were unknown. By studying phages that encode the major phage nucleus protein chimallin, including previously sequenced yet uncharacterized phages, we discovered that chimallin-encoding phages share a set of 72 highly conserved genes encoded within seven distinct gene blocks. Of these, 21 core genes are unique to this group, and all but one of these unique genes encode proteins of unknown function. We propose that phages with this core genome comprise a novel viral family we term Chimalliviridae. Fluorescence microscopy and cryo-electron tomography studies of Erwinia phage vB_EamM_RAY confirm that many of the key steps of nucleus-based replication encoded in the core genome are conserved among diverse chimalliviruses, and reveal that non-core components can confer intriguing variations on this replication mechanism. For instance, unlike previously studied nucleus-forming phages, RAY doesn't degrade the host genome, and its PhuZ homolog appears to form a five-stranded filament with a lumen. This work expands our understanding of phage nucleus and PhuZ spindle diversity and function, providing a roadmap for identifying key mechanisms underlying nucleus-based phage replication.

9.
Cell Rep ; 42(5): 112432, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37120812

RESUMEN

We recently discovered that some bacteriophages establish a nucleus-like replication compartment (phage nucleus), but the core genes that define nucleus-based phage replication and their phylogenetic distribution were still to be determined. Here, we show that phages encoding the major phage nucleus protein chimallin share 72 conserved genes encoded within seven gene blocks. Of these, 21 core genes are unique to nucleus-forming phage, and all but one of these genes encode proteins of unknown function. We propose that these phages comprise a novel viral family we term Chimalliviridae. Fluorescence microscopy and cryoelectron tomography studies of Erwinia phage vB_EamM_RAY confirm that many of the key steps of nucleus-based replication are conserved among diverse chimalliviruses and reveal variations on this replication mechanism. This work expands our understanding of phage nucleus and PhuZ spindle diversity and function, providing a roadmap for identifying key mechanisms underlying nucleus-based phage replication.


Asunto(s)
Bacteriófagos , Erwinia , Bacteriófagos/genética , Bacteriófagos/metabolismo , Erwinia/genética , Erwinia/metabolismo , Filogenia , Genoma Viral , ADN Viral/genética , ADN Viral/metabolismo
10.
Annu Rev Virol ; 9(1): 307-327, 2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-36173697

RESUMEN

Subcellular organization is essential for life. Cells organize their functions into organelles to concentrate their machinery and supplies for optimal efficiency. Likewise, viruses organize their replication machinery into compartments or factories within their host cells for optimal replicative efficiency. In this review, we discuss how DNA viruses that infect both eukaryotic cells and bacteria assemble replication compartments for synthesis of progeny viral DNA and transcription of the viral genome. Eukaryotic DNA viruses assemble replication compartments in the nucleus of the host cell while DNA bacteriophages assemble compartments called phage nuclei in the bacterial cytoplasm. Thus, DNA viruses infecting host cells from different domains of life share common replication strategies.


Asunto(s)
Bacteriófagos , Virus , Bacterias/genética , Bacteriófagos/genética , Núcleo Celular , Virus ADN/genética , ADN Bacteriano , ADN Viral/genética , Eucariontes/genética , Células Eucariotas , Replicación Viral , Virus/genética
11.
PLoS One ; 17(1): e0262354, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35061755

RESUMEN

The threat to public health posed by drug-resistant bacteria is rapidly increasing, as some of healthcare's most potent antibiotics are becoming obsolete. Approximately two-thirds of the world's antibiotics are derived from natural products produced by Streptomyces encoded biosynthetic gene clusters. Thus, to identify novel gene clusters, we sequenced the genomes of four bioactive Streptomyces strains isolated from the soil in San Diego County and used Bacterial Cytological Profiling adapted for agar plate culturing in order to examine the mechanisms of bacterial inhibition exhibited by these strains. In the four strains, we identified 104 biosynthetic gene clusters. Some of these clusters were predicted to produce previously studied antibiotics; however, the known mechanisms of these molecules could not fully account for the antibacterial activity exhibited by the strains, suggesting that novel clusters might encode antibiotics. When assessed for their ability to inhibit the growth of clinically isolated pathogens, three Streptomyces strains demonstrated activity against methicillin-resistant Staphylococcus aureus. Additionally, due to the utility of bacteriophages for genetically manipulating bacterial strains via transduction, we also isolated four new phages (BartholomewSD, IceWarrior, Shawty, and TrvxScott) against S. platensis. A genomic analysis of our phages revealed nearly 200 uncharacterized proteins, including a new site-specific serine integrase that could prove to be a useful genetic tool. Sequence analysis of the Streptomyces strains identified CRISPR-Cas systems and specific spacer sequences that allowed us to predict phage host ranges. Ultimately, this study identified Streptomyces strains with the potential to produce novel chemical matter as well as integrase-encoding phages that could potentially be used to manipulate these strains.


Asunto(s)
Bacteriófagos/aislamiento & purificación , Streptomyces/metabolismo , Streptomyces/virología , Antibacterianos/farmacología , Bacteriófagos/genética , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Familia de Multigenes/genética , Filogenia , ARN Ribosómico 16S/genética
12.
Nat Commun ; 12(1): 342, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33436625

RESUMEN

Understanding how biological species arise is critical for understanding the evolution of life on Earth. Bioinformatic analyses have recently revealed that viruses, like multicellular life, form reproductively isolated biological species. Viruses are known to share high rates of genetic exchange, so how do they evolve genetic isolation? Here, we evaluate two related bacteriophages and describe three factors that limit genetic exchange between them: 1) A nucleus-like compartment that physically separates replicating phage genomes, thereby limiting inter-phage recombination during co-infection; 2) A tubulin-based spindle that orchestrates phage replication and forms nonfunctional hybrid polymers; and 3) A nuclear incompatibility factor that reduces phage fitness. Together, these traits maintain species differences through Subcellular Genetic Isolation where viral genomes are physically separated during co-infection, and Virogenesis Incompatibility in which the interaction of cross-species components interferes with viral production.


Asunto(s)
Bacteriófagos/genética , Especiación Genética , Núcleo Celular/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Pseudomonas aeruginosa/virología , Especificidad de la Especie , Fracciones Subcelulares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA