Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 18(9): e1010122, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36126066

RESUMEN

Human RECQL4 is a member of the RecQ family of DNA helicases and functions during DNA replication and repair. RECQL4 mutations are associated with developmental defects and cancer. Although RECQL4 mutations lead to disease, RECQL4 overexpression is also observed in cancer, including breast and prostate. Thus, tight regulation of RECQL4 protein levels is crucial for genome stability. Because mammalian RECQL4 is essential, how cells regulate RECQL4 protein levels is largely unknown. Utilizing budding yeast, we investigated the RECQL4 homolog, HRQ1, during DNA crosslink repair. We find that Hrq1 functions in the error-free template switching pathway to mediate DNA intrastrand crosslink repair. Although Hrq1 mediates repair of cisplatin-induced lesions, it is paradoxically degraded by the proteasome following cisplatin treatment. By identifying the targeted lysine residues, we show that preventing Hrq1 degradation results in increased recombination and mutagenesis. Like yeast, human RECQL4 is similarly degraded upon exposure to crosslinking agents. Furthermore, over-expression of RECQL4 results in increased RAD51 foci, which is dependent on its helicase activity. Using bioinformatic analysis, we observe that RECQL4 overexpression correlates with increased recombination and mutations. Overall, our study uncovers a role for Hrq1/RECQL4 in DNA intrastrand crosslink repair and provides further insight how misregulation of RECQL4 can promote genomic instability, a cancer hallmark.


Asunto(s)
Neoplasias de la Mama , Proteínas de Saccharomyces cerevisiae , Neoplasias de la Mama/genética , Cisplatino/farmacología , ADN , Femenino , Inestabilidad Genómica/genética , Humanos , Lisina/genética , Complejo de la Endopetidasa Proteasomal/genética , RecQ Helicasas/metabolismo , Recombinación Genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Breast Cancer Res ; 23(1): 1, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33407744

RESUMEN

BACKGROUND: Endocrine therapy resistance is a hallmark of advanced estrogen receptor (ER)-positive breast cancer. In this study, we aimed to determine acquired genomic changes in endocrine-resistant disease. METHODS: We performed DNA/RNA hybrid-capture sequencing on 12 locoregional recurrences after long-term estrogen deprivation and identified acquired genomic changes versus each tumor's matched primary. RESULTS: Despite being up to 7 years removed from the primary lesion, most recurrences harbored similar intrinsic transcriptional and copy number profiles. Only two genes, AKAP9 and KMT2C, were found to have single nucleotide variant (SNV) enrichments in more than one recurrence. Enriched mutations in single cases included SNVs within transcriptional regulators such as ARID1A, TP53, FOXO1, BRD1, NCOA1, and NCOR2 with one local recurrence gaining three PIK3CA mutations. In contrast to DNA-level changes, we discovered recurrent outlier mRNA expression alterations were common-including outlier gains in TP63 (n = 5 cases [42%]), NTRK3 (n = 5 [42%]), NTRK2 (n = 4 [33%]), PAX3 (n = 4 [33%]), FGFR4 (n = 3 [25%]), and TERT (n = 3 [25%]). Recurrent losses involved ESR1 (n = 5 [42%]), RELN (n = 5 [42%]), SFRP4 (n = 4 [33%]), and FOSB (n = 4 [33%]). ESR1-depleted recurrences harbored shared transcriptional remodeling events including upregulation of PROM1 and other basal cancer markers. CONCLUSIONS: Taken together, this study defines acquired genomic changes in long-term, estrogen-deprived disease; highlights the importance of longitudinal RNA profiling; and identifies a common ESR1-depleted endocrine-resistant breast cancer subtype with basal-like transcriptional reprogramming.


Asunto(s)
Biomarcadores de Tumor , Neoplasias de la Mama/etiología , Neoplasias de la Mama/metabolismo , Estrógenos/metabolismo , Regulación Neoplásica de la Expresión Génica , Mutación , Neoplasias de la Mama/patología , Neoplasias de la Mama/terapia , Biología Computacional/métodos , Variaciones en el Número de Copia de ADN , Receptor alfa de Estrógeno/metabolismo , Femenino , Perfilación de la Expresión Génica , Humanos , Recurrencia , Transcriptoma
3.
BMC Med ; 18(1): 349, 2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-33208158

RESUMEN

BACKGROUND: Metastatic breast cancer is a major cause of cancer-related deaths in woman. Brain metastasis is a common and devastating site of relapse for several breast cancer molecular subtypes, including oestrogen receptor-positive disease, with life expectancy of less than a year. While efforts have been devoted to developing therapeutics for extra-cranial metastasis, drug penetration of blood-brain barrier (BBB) remains a major clinical challenge. Defining molecular alterations in breast cancer brain metastasis enables the identification of novel actionable targets. METHODS: Global transcriptomic analysis of matched primary and metastatic patient tumours (n = 35 patients, 70 tumour samples) identified a putative new actionable target for advanced breast cancer which was further validated in vivo and in breast cancer patient tumour tissue (n = 843 patients). A peptide mimetic of the target's natural ligand was designed in silico and its efficacy assessed in in vitro, ex vivo and in vivo models of breast cancer metastasis. RESULTS: Bioinformatic analysis of over-represented pathways in metastatic breast cancer identified ADAM22 as a top ranked member of the ECM-related druggable genome specific to brain metastases. ADAM22 was validated as an actionable target in in vitro, ex vivo and in patient tumour tissue (n = 843 patients). A peptide mimetic of the ADAM22 ligand LGI1, LGI1MIM, was designed in silico. The efficacy of LGI1MIM and its ability to penetrate the BBB were assessed in vitro, ex vivo and in brain metastasis BBB 3D biometric biohybrid models, respectively. Treatment with LGI1MIM in vivo inhibited disease progression, in particular the development of brain metastasis. CONCLUSION: ADAM22 expression in advanced breast cancer supports development of breast cancer brain metastasis. Targeting ADAM22 with a peptide mimetic LGI1MIM represents a new therapeutic option to treat metastatic brain disease.


Asunto(s)
Proteínas ADAM/metabolismo , Materiales Biomiméticos/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/secundario , Neoplasias de la Mama/tratamiento farmacológico , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Péptidos/farmacología , Proteínas ADAM/biosíntesis , Proteínas ADAM/genética , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Femenino , Perfilación de la Expresión Génica , Humanos , Terapia Molecular Dirigida , Recurrencia Local de Neoplasia/metabolismo , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética
4.
Nucleic Acids Res ; 44(5): e47, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26582927

RESUMEN

BACKGROUND: Fusion transcripts are formed by either fusion genes (DNA level) or trans-splicing events (RNA level). They have been recognized as a promising tool for diagnosing, subtyping and treating cancers. RNA-seq has become a precise and efficient standard for genome-wide screening of such aberration events. Many fusion transcript detection algorithms have been developed for paired-end RNA-seq data but their performance has not been comprehensively evaluated to guide practitioners. In this paper, we evaluated 15 popular algorithms by their precision and recall trade-off, accuracy of supporting reads and computational cost. We further combine top-performing methods for improved ensemble detection. RESULTS: Fifteen fusion transcript detection tools were compared using three synthetic data sets under different coverage, read length, insert size and background noise, and three real data sets with selected experimental validations. No single method dominantly performed the best but SOAPfuse generally performed well, followed by FusionCatcher and JAFFA. We further demonstrated the potential of a meta-caller algorithm by combining top performing methods to re-prioritize candidate fusion transcripts with high confidence that can be followed by experimental validation. CONCLUSION: Our result provides insightful recommendations when applying individual tool or combining top performers to identify fusion transcript candidates.


Asunto(s)
Algoritmos , Fusión Génica , Proteínas Mutantes Quiméricas/genética , Proteínas de Fusión Oncogénica/genética , ARN Mensajero/genética , Programas Informáticos , Empalme Alternativo , Perfilación de la Expresión Génica , Humanos , Neoplasias/genética , Análisis de Secuencia de ARN
5.
PLoS Genet ; 11(2): e1004967, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25679399

RESUMEN

Genes involved in the same function tend to have similar evolutionary histories, in that their rates of evolution covary over time. This coevolutionary signature, termed Evolutionary Rate Covariation (ERC), is calculated using only gene sequences from a set of closely related species and has demonstrated potential as a computational tool for inferring functional relationships between genes. To further define applications of ERC, we first established that roughly 55% of genetic diseases posses an ERC signature between their contributing genes. At a false discovery rate of 5% we report 40 such diseases including cancers, developmental disorders and mitochondrial diseases. Given these coevolutionary signatures between disease genes, we then assessed ERC's ability to prioritize known disease genes out of a list of unrelated candidates. We found that in the presence of an ERC signature, the true disease gene is effectively prioritized to the top 6% of candidates on average. We then apply this strategy to a melanoma-associated region on chromosome 1 and identify MCL1 as a potential causative gene. Furthermore, to gain global insight into disease mechanisms, we used ERC to predict molecular connections between 310 nominally distinct diseases. The resulting "disease map" network associates several diseases with related pathogenic mechanisms and unveils many novel relationships between clinically distinct diseases, such as between Hirschsprung's disease and melanoma. Taken together, these results demonstrate the utility of molecular evolution as a gene discovery platform and show that evolutionary signatures can be used to build informative gene-based networks.


Asunto(s)
Evolución Molecular , Redes Reguladoras de Genes/genética , Enfermedad de Hirschsprung/genética , Melanoma/genética , Cromosomas/genética , Biología Computacional , Genoma Humano , Enfermedad de Hirschsprung/patología , Humanos , Melanoma/patología , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Estructura Terciaria de Proteína
6.
J Biol Chem ; 291(26): 13495-508, 2016 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-27129776

RESUMEN

Diallyl trisulfide (DATS), a metabolic byproduct of garlic, is known to inhibit the growth of breast cancer cells in vitro and in vivo This study demonstrates that DATS targets breast cancer stem cells (bCSC). Exposure of MCF-7 and SUM159 human breast cancer cells to pharmacological concentrations of DATS (2.5 and 5 µm) resulted in dose-dependent inhibition of bCSC, as evidenced by a mammosphere assay and flow cytometric analysis of aldehyde dehydrogenase 1 (ALDH1) activity and the CD44(high)/CD24(low)/epithelial specific antigen-positive fraction. DATS-mediated inhibition of bCSC was associated with a decrease in the protein level of FoxQ1. Overexpression of FoxQ1 in MCF-7 and SUM159 cells increased ALDH1 activity and the CD49f(+)/CD24(-) fraction. Inhibition of ALDH1 activity and/or mammosphere formation upon DATS treatment was significantly attenuated by overexpression of FoxQ1. In agreement with these results, stable knockdown of FoxQ1 using small hairpin RNA augmented bCSC inhibition by DATS. Expression profiling for cancer stem cell-related genes suggested that FoxQ1 may negatively regulate the expression of Dachshund homolog 1 (DACH1), whose expression is lost in invasive breast cancer. Chromatin immunoprecipitation confirmed recruitment of FoxQ1 at the DACH1 promoter. Moreover, inducible expression of DACH1 augmented DATS-mediated inhibition of bCSC. Expression of FoxQ1 protein was significantly higher in triple-negative breast cancer cases compared with normal mammary tissues. Moreover, an inverse association was observed between FoxQ1 and DACH1 gene expression in breast cancer cell lines and tumors. DATS administration inhibited ALDH1 activity in vivo in SUM159 xenografts. These results indicate that FoxQ1 is a novel target of bCSC inhibition by DATS.


Asunto(s)
Compuestos Alílicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Factores de Transcripción Forkhead/metabolismo , Isoenzimas/antagonistas & inhibidores , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/metabolismo , Células Madre Neoplásicas/metabolismo , Retinal-Deshidrogenasa/antagonistas & inhibidores , Sulfuros/farmacología , Familia de Aldehído Deshidrogenasa 1 , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Femenino , Factores de Transcripción Forkhead/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Células MCF-7 , Ratones , Ratones Desnudos , Invasividad Neoplásica , Proteínas de Neoplasias/genética , Células Madre Neoplásicas/patología , Retinal-Deshidrogenasa/genética , Retinal-Deshidrogenasa/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Am J Hum Genet ; 93(6): 1061-71, 2013 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-24268657

RESUMEN

Obesity is a major public health concern, and complementary research strategies have been directed toward the identification of the underlying causative gene mutations that affect the normal pathways and networks that regulate energy balance. Here, we describe an autosomal-recessive morbid-obesity syndrome and identify the disease-causing gene defect. The average body mass index of affected family members was 48.7 (range = 36.7-61.0), and all had features of the metabolic syndrome. Homozygosity mapping localized the disease locus to a region in 3q29; we designated this region the morbid obesity 1 (MO1) locus. Sequence analysis identified a homozygous nonsense mutation in CEP19, the gene encoding the ciliary protein CEP19, in all affected family members. CEP19 is highly conserved in vertebrates and invertebrates, is expressed in multiple tissues, and localizes to the centrosome and primary cilia. Homozygous Cep19-knockout mice were morbidly obese, hyperphagic, glucose intolerant, and insulin resistant. Thus, loss of the ciliary protein CEP19 in humans and mice causes morbid obesity and defines a target for investigating the molecular pathogenesis of this disease and potential treatments for obesity and malnutrition.


Asunto(s)
Proteínas de Ciclo Celular/genética , Silenciador del Gen , Obesidad Mórbida/genética , Adulto , Secuencia de Aminoácidos , Animales , Clonación Molecular , Consanguinidad , Secuencia Conservada , Modelos Animales de Enfermedad , Femenino , Orden Génico , Marcación de Gen , Estudios de Asociación Genética , Ligamiento Genético , Genotipo , Prueba de Tolerancia a la Glucosa , Humanos , Insulina/metabolismo , Resistencia a la Insulina/genética , Masculino , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Mutación , Obesidad Mórbida/diagnóstico , Linaje , Fenotipo , Mapeo Físico de Cromosoma , Transducción de Señal , Adulto Joven
8.
bioRxiv ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38766070

RESUMEN

Background: Inflammatory breast cancer (IBC) is a rare and poorly characterized type of breast cancer with an aggressive clinical presentation. The biological mechanisms driving the IBC phenotype are relatively undefined-partially due to a lack of comprehensive, large-scale genomic studies and limited clinical cohorts. Patients and Methods: A retrospective analysis of 2457 patients with metastatic breast cancer who underwent targeted tumor-only DNA-sequencing was performed at Dana-Farber Cancer Institute. Clinicopathologic, single nucleotide variant (SNV), copy number variant (CNV) and tumor mutational burden (TMB) comparisons were made between clinically confirmed IBC cases within a dedicated IBC center versus non-IBC cases. Results: Clinicopathologic differences between IBC and non-IBC cases were consistent with prior reports-including IBC being associated with younger age at diagnosis, higher grade, and enrichment with hormone receptor (HR)-negative and HER2-positive tumors. The most frequent somatic alterations in IBC involved TP53 (72%), ERBB2 (32%), PIK3CA (24%), CCND1 (12%), MYC (9%), FGFR1 (8%) and GATA3 (8%). A multivariate logistic regression analysis revealed a significant enrichment in TP53 SNVs in IBC; particularly in HER2-positive and HR-positive disease which was associated with worse outcomes. Tumor mutational burden (TMB) did not differ substantially between IBC and non-IBC cases and a pathway analysis revealed an enrichment in NOTCH pathway alterations in HER2-positive disease. Conclusion: Taken together, this study provides a comprehensive, clinically informed landscape of somatic alterations in a large cohort of patients with IBC. Our data support higher frequency of TP53 mutations and a potential enrichment in NOTCH pathway activation-but overall; a lack of major genomic differences. These results both reinforce the importance of TP53 alterations in IBC pathogenesis as well as their influence on clinical outcomes; but also suggest additional analyses beyond somatic DNA-level changes are warranted.

9.
Breast Cancer Res ; 14(5): 323, 2012 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-23113888

RESUMEN

The continuing advancement of sequencing technologies has made the systematic identification of all driving somatic events in cancer a possibility. In the June 2012 issue of Nature, five papers show some significant headway in this endeavor, each a herculean effort of genome sequencing, and transcriptome and copy number analysis resulting in data on thousands of breast cancers. Integrating these massive datasets, the authors were able to further subdivide breast cancer and identify a number of novel driver genes. While the studies represent a leap forward in describing the genomics of breast cancer, and clearly highlight the tremendous diversity between tumors, the studies only scrape the surface of molecular changes in breast tumors, with more granularity to come from the study of epigenomics, single cell sequencing, and so on. The immediate importance of the data to clinical care is currently unknown, and will depend upon detailed identification and functional analysis of driver mutations.


Asunto(s)
Inhibidores de la Aromatasa/uso terapéutico , Aromatasa/metabolismo , Neoplasias de la Mama/clasificación , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Transformación Celular Neoplásica/genética , Variaciones en el Número de Copia de ADN/genética , Evolución Molecular , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Genoma Humano/genética , Mutagénesis/genética , Mutación/genética , Oncogenes/genética , Translocación Genética/genética , Femenino , Humanos
10.
Eur J Cancer ; 174: 277-286, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36116830

RESUMEN

BACKGROUND: HER2)-low expression is a predictive biomarker for novel anti-HER2 antibody-drug conjugates. However, little is known about its clinical significance in inflammatory breast cancer (IBC). METHODS: Patients diagnosed with HER2-negative IBC between December 1999 and December 2020 were identified from the Dana-Farber Cancer Institute IBC registry. Patients were divided into HER2-low (IHC 1+ or 2+/ISH-) and HER2-zero (IHC 0), comparing clinicopathologic features and disease outcomes between the two subgroups. RESULTS: The study included 276 patients. Among patients with stage III (n = 209) and stage IV (n = 67) IBC, 54% and 39% had HER2-low tumours, respectively. Oestrogen receptor (ER)-expressing tumours were more common in patients with HER2-low versus HER2-zero stage III IBC (65% versus 38%, p < 0.01). Among stage III patients undergoing surgery (n = 182), pathologic complete response (pCR) rates were higher for HER2-zero versus HER2-low IBC (11% versus 6%, OR: 1.8, 95%CI:0.6-5.3), but minimal differences persisted when separately analysing pCR by ER status. Similar invasive disease-free survival (iDFS) outcomes were observed among ER-positive HER2-zero versus HER2-low IBC (48-month iDFS: 63% versus 63%, HR: 1.10, 95%CI:0.57-2.13) and ER-negative HER2-zero versus HER2-low IBC (48-month iDFS: 28% versus 25%, HR: 1.19, 95%CI:0.69-2.04). Differences in overall survival (OS) were small, both among ER-positive HER2-zero versus HER2-low IBC (48-month OS: 80% versus 81%, HR: 0.82, 95%CI:0.39-1.73) and ER-negative HER2-zero versus HER2-low IBC (48-month OS: 34% versus 47%, HR: 1.34, 95%CI: 0.74-2.41). CONCLUSIONS: Marginal differences in clinicopathologic features and outcomes were observed in HER2-low versus HER2-zero IBC when controlling for ER status, not supporting the definition of HER2-low as a distinct subtype of IBC.


Asunto(s)
Neoplasias Inflamatorias de la Mama , Receptor ErbB-2 , Femenino , Humanos , Inmunoconjugados , Neoplasias Inflamatorias de la Mama/genética , Neoplasias Inflamatorias de la Mama/metabolismo , Neoplasias Inflamatorias de la Mama/patología , Pronóstico , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Receptores de Estrógenos/metabolismo
11.
Nat Commun ; 13(1): 2011, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35440136

RESUMEN

Estrogen receptor alpha (ER/ESR1) is frequently mutated in endocrine resistant ER-positive (ER+) breast cancer and linked to ligand-independent growth and metastasis. Despite the distinct clinical features of ESR1 mutations, their role in intrinsic subtype switching remains largely unknown. Here we find that ESR1 mutant cells and clinical samples show a significant enrichment of basal subtype markers, and six basal cytokeratins (BCKs) are the most enriched genes. Induction of BCKs is independent of ER binding and instead associated with chromatin reprogramming centered around a progesterone receptor-orchestrated insulated neighborhood. BCK-high ER+ primary breast tumors exhibit a number of enriched immune pathways, shared with ESR1 mutant tumors. S100A8 and S100A9 are among the most induced immune mediators and involve in tumor-stroma paracrine crosstalk inferred by single-cell RNA-seq from metastatic tumors. Collectively, these observations demonstrate that ESR1 mutant tumors gain basal features associated with increased immune activation, encouraging additional studies of immune therapeutic vulnerabilities.


Asunto(s)
Neoplasias de la Mama , Receptor alfa de Estrógeno/genética , Neoplasias de la Mama/patología , Receptor alfa de Estrógeno/metabolismo , Femenino , Humanos , Mutación
12.
Cancer Res ; 82(7): 1321-1339, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35078818

RESUMEN

Constitutively active estrogen receptor α (ER/ESR1) mutations have been identified in approximately one-third of ER+ metastatic breast cancers. Although these mutations are known as mediators of endocrine resistance, their potential role in promoting metastatic disease has not yet been mechanistically addressed. In this study, we show the presence of ESR1 mutations exclusively in distant but not local recurrences in five independent breast cancer cohorts. In concordance with transcriptomic profiling of ESR1-mutant tumors, genome-edited ESR1 Y537S and D538G-mutant cell models exhibited a reprogrammed cell adhesive gene network via alterations in desmosome/gap junction genes and the TIMP3/MMP axis, which functionally conferred enhanced cell-cell contacts while decreasing cell-extracellular matrix adhesion. In vivo studies showed ESR1-mutant cells were associated with larger multicellular circulating tumor cell (CTC) clusters with increased compactness compared with ESR1 wild-type CTCs. These preclinical findings translated to clinical observations, where CTC clusters were enriched in patients with ESR1-mutated metastatic breast cancer. Conversely, context-dependent migratory phenotypes revealed cotargeting of Wnt and ER as a vulnerability in a D538G cell model. Mechanistically, mutant ESR1 exhibited noncanonical regulation of several metastatic pathways, including secondary transcriptional regulation and de novo FOXA1-driven chromatin remodeling. Collectively, these data provide evidence for ESR1 mutation-modulated metastasis and suggest future therapeutic strategies for targeting ESR1-mutant breast cancer. SIGNIFICANCE: Context- and allele-dependent transcriptome and cistrome reprogramming in mutant ESR1 cell models elicit diverse metastatic phenotypes related to cell adhesion and migration, which can be pharmacologically targeted in metastatic breast cancer.


Asunto(s)
Neoplasias de la Mama , Receptor alfa de Estrógeno , Neoplasias Primarias Secundarias , Células Neoplásicas Circulantes , Neoplasias de la Mama/patología , Receptor alfa de Estrógeno/genética , Femenino , Humanos , Mutación
13.
Cancer Res ; 81(2): 268-281, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33148662

RESUMEN

Invasive lobular breast carcinoma (ILC), one of the major breast cancer histologic subtypes, exhibits unique features compared with the well-studied ductal cancer subtype (IDC). The pathognomonic feature of ILC is loss of E-cadherin, mainly caused by inactivating mutations, but the contribution of this genetic alteration to ILC-specific molecular characteristics remains largely understudied. To profile these features transcriptionally, we conducted single-cell RNA sequencing on a panel of IDC and ILC cell lines, and an IDC cell line (T47D) with CRISPR-Cas9-mediated E-cadherin knockout (KO). Inspection of intracell line heterogeneity illustrated genetically and transcriptionally distinct subpopulations in multiple cell lines and highlighted rare populations of MCF7 cells highly expressing an apoptosis-related signature, positively correlated with a preadaptation signature to estrogen deprivation. Investigation of E-cadherin KO-induced alterations showed transcriptomic membranous systems remodeling, elevated resemblance to ILCs in regulon activation, and increased sensitivity to IFNγ-mediated growth inhibition via activation of IRF1. This study reveals single-cell transcriptional heterogeneity in breast cancer cell lines and provides a resource to identify drivers of cancer progression and drug resistance. SIGNIFICANCE: This study represents a key step towards understanding heterogeneity in cancer cell lines and the role of E-cadherin depletion in contributing to the molecular features of invasive lobular breast carcinoma.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias de la Mama/patología , Carcinoma Ductal de Mama/patología , Carcinoma Lobular/patología , Regulación Neoplásica de la Expresión Génica , Análisis de la Célula Individual/métodos , Transcriptoma , Antígenos CD/genética , Antígenos CD/metabolismo , Neoplasias de la Mama/genética , Cadherinas/antagonistas & inhibidores , Cadherinas/genética , Cadherinas/metabolismo , Carcinoma Ductal de Mama/genética , Carcinoma Lobular/genética , Femenino , Humanos , Mutación , Pronóstico , Células Tumorales Cultivadas
14.
Oncogene ; 40(7): 1318-1331, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33420368

RESUMEN

Steroid regulated cancer cells use nuclear receptors and associated regulatory proteins to orchestrate transcriptional networks to drive disease progression. In primary breast cancer, the coactivator AIB1 promotes estrogen receptor (ER) transcriptional activity to enhance cell proliferation. The function of the coactivator in ER+ metastasis however is not established. Here we describe AIB1 as a survival factor, regulator of pro-metastatic transcriptional pathways and a promising actionable target. Genomic alterations and functional expression of AIB1 associated with reduced disease-free survival in patients and enhanced metastatic capacity in novel CDX and PDX ex-vivo models of ER+ metastatic disease. Comparative analysis of the AIB1 interactome with complementary RNAseq characterized AIB1 as a transcriptional repressor. Specifically, we report that AIB1 interacts with MTA2 to form a repressive complex, inhibiting CDH1 (encoding E-cadherin) to promote EMT and drive progression. We further report that pharmacological and genetic inhibition of AIB1 demonstrates significant anti-proliferative activity in patient-derived models establishing AIB1 as a viable strategy to target endocrine resistant metastasis. This work defines a novel role for AIB1 in the regulation of EMT through transcriptional repression in advanced cancer cells with a considerable implication for prognosis and therapeutic interventions.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Cadherinas/genética , Histona Desacetilasas/genética , Coactivador 3 de Receptor Nuclear/genética , Proteínas Represoras/genética , Antígenos CD/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Proliferación Celular/genética , Supervivencia sin Enfermedad , Transición Epitelial-Mesenquimal/efectos de los fármacos , Receptor alfa de Estrógeno/genética , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Células MCF-7 , Metástasis de la Neoplasia , Coactivador 3 de Receptor Nuclear/antagonistas & inhibidores , Fenotipo , Pronóstico , Tamoxifeno/farmacología
15.
Mol Cancer Res ; 17(2): 457-468, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30355675

RESUMEN

DNA sequencing has identified a limited number of driver mutations in metastatic breast cancer beyond single base-pair mutations in the estrogen receptor (ESR1). However, our previous studies and others have observed that structural variants, such as ESR1 fusions, may also play a role. Therefore, we expanded upon these observations by performing a comprehensive and highly sensitive characterization of copy-number (CN) alterations in a large clinical cohort of metastatic specimens. NanoString DNA hybridization was utilized to measure CN gains, amplifications, and deletions of 67 genes in 108 breast cancer metastases, and in 26 cases, the patient-matched primary tumor. For ESR1, a copyshift algorithm was applied to identify CN imbalances at exon-specific resolution and queried large data sets (>15,000 tumors) that had previously undergone next-generation sequencing (NGS). Interestingly, a subset of ER+ tumors showed increased ESR1 CN (11/82, 13%); three had CN amplifications (4%) and eight had gains (10%). Increased ESR1 CN was enriched in metastatic specimens versus primary tumors, and this was orthogonally confirmed in a large NGS data set. ESR1-amplified tumors showed a site-specific enrichment for bone metastases and worse outcomes than nonamplified tumors. No ESR1 CN amplifications and only one gain was identified in ER- tumors. ESR1 copyshift was present in 5 of the 11 ESR1-amplified tumors. Other frequent amplifications included ERBB2, GRB7, and cell-cycle pathway members CCND1 and CDK4/6, which showed mutually exclusivity with deletions of CDKN2A, CDKN2B, and CDKN1B. IMPLICATIONS: Copy-number alterations of ESR1 and key CDK pathway genes are frequent in metastatic breast cancers, and their clinical relevance should be tested further.


Asunto(s)
Neoplasias de la Mama/genética , Quinasa 4 Dependiente de la Ciclina/metabolismo , Quinasa 6 Dependiente de la Ciclina/metabolismo , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/metabolismo , Receptor alfa de Estrógeno/genética , Neoplasias de la Mama/patología , Variaciones en el Número de Copia de ADN , ADN de Neoplasias/genética , Femenino , Amplificación de Genes , Humanos , Células MCF-7 , Metástasis de la Neoplasia , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Transducción de Señal
16.
NPJ Breast Cancer ; 5: 19, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31263748

RESUMEN

Invasive lobular carcinoma (ILC) is an understudied subtype of breast cancer that requires novel therapies in the advanced setting. To study acquired resistance to endocrine therapy in ILC, we have recently performed RNA-Sequencing on long-term estrogen deprived cell lines and identified FGFR4 overexpression as a top druggable target. Here, we show that FGFR4 expression also increases dramatically in endocrine-treated distant metastases, with an average fold change of 4.8 relative to the paired primary breast tumor for ILC, and 2.4-fold for invasive ductal carcinoma (IDC). In addition, we now report that FGFR4 hotspot mutations are enriched in metastatic breast cancer, with an additional enrichment for ILC, suggesting a multimodal selection of FGFR4 activation. These data collectively support the notion that FGFR4 is an important mediator of endocrine resistance in ILC, warranting future mechanistic studies on downstream signaling of overexpressed wild-type and mutant FGFR4.

17.
J Natl Cancer Inst ; 111(4): 388-398, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29961873

RESUMEN

BACKGROUND: Breast cancer brain metastases (BrMs) are defined by complex adaptations to both adjuvant treatment regimens and the brain microenvironment. Consequences of these alterations remain poorly understood, as does their potential for clinical targeting. We utilized genome-wide molecular profiling to identify therapeutic targets acquired in metastatic disease. METHODS: Gene expression profiling of 21 patient-matched primary breast tumors and their associated brain metastases was performed by TrueSeq RNA-sequencing to determine clinically actionable BrM target genes. Identified targets were functionally validated using small molecule inhibitors in a cohort of resected BrM ex vivo explants (n = 4) and in a patient-derived xenograft (PDX) model of BrM. All statistical tests were two-sided. RESULTS: Considerable shifts in breast cancer cell-specific gene expression profiles were observed (1314 genes upregulated in BrM; 1702 genes downregulated in BrM; DESeq; fold change > 1.5, Padj < .05). Subsequent bioinformatic analysis for readily druggable targets revealed recurrent gains in RET expression and human epidermal growth factor receptor 2 (HER2) signaling. Small molecule inhibition of RET and HER2 in ex vivo patient BrM models (n = 4) resulted in statistically significantly reduced proliferation (P < .001 in four of four models). Furthermore, RET and HER2 inhibition in a PDX model of BrM led to a statistically significant antitumor response vs control (n = 4, % tumor growth inhibition [mean difference; SD], anti-RET = 86.3% [1176; 258.3], P < .001; anti-HER2 = 91.2% [1114; 257.9], P < .01). CONCLUSIONS: RNA-seq profiling of longitudinally collected specimens uncovered recurrent gene expression acquisitions in metastatic tumors, distinct from matched primary tumors. Critically, we identify aberrations in key oncogenic pathways and provide functional evidence for their suitability as therapeutic targets. Altogether, this study establishes recurrent, acquired vulnerabilities in BrM that warrant immediate clinical investigation and suggests paired specimen expression profiling as a compelling and underutilized strategy to identify targetable dependencies in advanced cancers.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Encefálicas/genética , Neoplasias de la Mama/genética , Regulación Neoplásica de la Expresión Génica , Recurrencia Local de Neoplasia/genética , Transcriptoma , Adulto , Animales , Neoplasias Encefálicas/secundario , Neoplasias de la Mama/patología , Estudios de Casos y Controles , Femenino , Estudios de Seguimiento , Perfilación de la Expresión Génica , Humanos , Estudios Longitudinales , Ratones , Persona de Mediana Edad , Recurrencia Local de Neoplasia/patología , Pronóstico , Tasa de Supervivencia , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Cancer Res ; 78(5): 1225-1240, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29259013

RESUMEN

The angiotensin II receptor AGTR1, which mediates vasoconstrictive and inflammatory signaling in vascular disease, is overexpressed aberrantly in some breast cancers. In this study, we established the significance of an AGTR1-responsive NFκB signaling pathway in this breast cancer subset. We documented that AGTR1 overexpression occurred in the luminal A and B subtypes of breast cancer, was mutually exclusive of HER2 expression, and correlated with aggressive features that include increased lymph node metastasis, reduced responsiveness to neoadjuvant therapy, and reduced overall survival. Mechanistically, AGTR1 overexpression directed both ligand-independent and ligand-dependent activation of NFκB, mediated by a signaling pathway that requires the triad of CARMA3, Bcl10, and MALT1 (CBM signalosome). Activation of this pathway drove cancer cell-intrinsic responses that include proliferation, migration, and invasion. In addition, CBM-dependent activation of NFκB elicited cancer cell-extrinsic effects, impacting endothelial cells of the tumor microenvironment to promote tumor angiogenesis. CBM/NFκB signaling in AGTR1+ breast cancer therefore conspires to promote aggressive behavior through pleiotropic effects. Overall, our results point to the prognostic and therapeutic value of identifying AGTR1 overexpression in a subset of HER2-negative breast cancers, and they provide a mechanistic rationale to explore the repurposing of drugs that target angiotensin II-dependent NFκB signaling pathways to improve the treatment of this breast cancer subset.Significance: These findings offer a mechanistic rationale to explore the repurposing of drugs that target angiotensin action to improve the treatment of AGTR1-expressing breast cancers. Cancer Res; 78(5); 1225-40. ©2017 AACR.


Asunto(s)
Proteína 10 de la LLC-Linfoma de Células B/metabolismo , Neoplasias de la Mama/patología , Proteínas Adaptadoras de Señalización CARD/metabolismo , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/metabolismo , FN-kappa B/metabolismo , Receptor de Angiotensina Tipo 1/metabolismo , Receptores de Angiotensina/metabolismo , Animales , Apoptosis , Proteína 10 de la LLC-Linfoma de Células B/antagonistas & inhibidores , Proteína 10 de la LLC-Linfoma de Células B/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Proteínas Adaptadoras de Señalización CARD/antagonistas & inhibidores , Proteínas Adaptadoras de Señalización CARD/genética , Movimiento Celular , Proliferación Celular , Embrión de Pollo , Femenino , Estudios de Seguimiento , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Ratones Desnudos , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/antagonistas & inhibidores , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/genética , FN-kappa B/genética , Neovascularización Patológica , Pronóstico , ARN Interferente Pequeño/genética , Receptor de Angiotensina Tipo 1/genética , Receptores de Angiotensina/química , Receptores de Angiotensina/genética , Tasa de Supervivencia , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
19.
JCI Insight ; 2(17)2017 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-28878133

RESUMEN

Bone metastases (BoM) are a significant cause of morbidity in patients with estrogen receptor-positive (ER-positive) breast cancer; yet, characterizations of human specimens are limited. In this study, exome-capture RNA sequencing (ecRNA-seq) on aged (8-12 years), formalin-fixed, paraffin-embedded (FFPE), and decalcified cancer specimens was evaluated. Gene expression values and ecRNA-seq quality metrics from FFPE or decalcified tumor RNA showed minimal differences when compared with matched flash-frozen or nondecalcified tumors. ecRNA-seq was then applied on a longitudinal collection of 11 primary breast cancers and patient-matched synchronous or recurrent BoMs. Overtime, BoMs exhibited gene expression shifts to more Her2 and LumB PAM50 subtype profiles, temporally influenced expression evolution, recurrently dysregulated prognostic gene sets, and longitudinal expression alterations of clinically actionable genes, particularly in the CDK/Rb/E2F and FGFR signaling pathways. Taken together, this study demonstrates the use of ecRNA-seq on decade-old and decalcified specimens and defines recurrent longitudinal transcriptional remodeling events in estrogen-deprived breast cancers.


Asunto(s)
Neoplasias Óseas/genética , Neoplasias Óseas/secundario , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Calcinosis/genética , Exoma , Análisis de Secuencia de ARN , Adulto , Neoplasias Óseas/patología , Estudios de Cohortes , Femenino , Genes erbB-2 , Humanos , Persona de Mediana Edad
20.
JAMA Oncol ; 3(5): 666-671, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-27926948

RESUMEN

IMPORTANCE: Patients with breast cancer (BrCa) brain metastases (BrM) have limited therapeutic options. A better understanding of molecular alterations acquired in BrM could identify clinically actionable metastatic dependencies. OBJECTIVE: To determine whether there are intrinsic subtype differences between primary tumors and matched BrM and to uncover BrM-acquired alterations that are clinically actionable. DESIGN, SETTING, AND PARTICIPANTS: In total, 20 cases of primary breast cancer tissue and resected BrM (10 estrogen receptor [ER]-negative and 10 ER-positive) from 2 academic institutions were included. Eligible cases in the discovery cohort harbored patient-matched primary breast cancer tissue and resected BrM. Given the rarity of patient-matched samples, no exclusion criteria were enacted. Two validation sequencing cohorts were used-a published data set of 17 patient-matched cases of BrM and a cohort of 7884 BrCa tumors enriched for metastatic samples. MAIN OUTCOMES AND MEASURES: Brain metastases expression changes in 127 genes within BrCa signatures, PAM50 assignments, and ERBB2/HER2 DNA-level gains. RESULTS: Overall, 17 of 20 BrM retained the PAM50 subtype of the primary BrCa. Despite this concordance, 17 of 20 BrM harbored expression changes (<2-fold or >2-fold) in clinically actionable genes including gains of FGFR4 (n = 6 [30%]), FLT1 (n = 4 [20%]), AURKA (n = 2 [10%]) and loss of ESR1 expression (n = 9 [45%]). The most recurrent expression gain was ERBB2/HER2, which showed a greater than 2-fold expression increase in 7 of 20 BrM (35%). Three of these 7 cases were ERBB2/HER2-negative out of 13 ERBB2/HER2-negative in the primary BrCa cohort and became immunohistochemical positive (3+) in the paired BrM with metastasis-specific amplification of the ERBB2/HER2 locus. In an independent data set, 2 of 9 (22.2%) ERBB2/HER2-negative BrCa switched to ERBB2/HER2-positive with 1 BrM acquiring ERBB2/HER2 amplification and the other showing metastatic enrichment of the activating V777L ERBB2/HER2 mutation. An expanded cohort revealed that ERBB2/HER2 amplification and/or mutation frequency was unchanged between local disease and metastases across all sites; however, a significant enrichment was appreciated for BrM (13% local vs 24% BrM; P < .001). CONCLUSIONS AND RELEVANCE: Breast cancer BrM commonly acquire alterations in clinically actionable genes, with metastasis-acquired ERBB2/HER2 alterations in approximately 20% of ERBB2/HER2-negative cases. These observations have immediate clinical implications for patients with ERBB2/HER2-negative breast cancer and support comprehensive profiling of metastases to inform clinical care.


Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/secundario , Neoplasias de la Mama/genética , Mutación , Receptor ErbB-2/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/cirugía , Neoplasias de la Mama/metabolismo , Femenino , Amplificación de Genes , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Humanos , Receptor ErbB-2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA