RESUMEN
Homeostasis in healthy tissues strongly relies on cell-to-cell adhesion and cell-to-extracellular matrix interactions. For instance, normal epithelial cells maintain tissue structure by adhering to each other and to the extracellular matrix. The proteins that mediate these distinct interactions are collectively called cell adhesion molecules and are divided into four major groups: cadherins, integrins, selectins, and immunoglobulins. They not only physically anchor cells, but also critically integrate signaling between the extracellular microenvironment and cells. These signals include biochemical cues, as adhesion proteins can both act as ligand-activated receptors and activate mechanotransduction triggered by changes in the physical environment. Molecular mechanisms related to cell adhesion signaling have been extensively studied, especially because mutations and changes in expression of these proteins, particularly cadherins and integrins, are frequently associated with diseases ranging from developmental intellectual disability to cancer. In fact, two major hallmarks of cancer, loss of cell-to-cell adhesion and anchorage-independent growth, are both dependent on cell adhesion molecules. Despite many studies elucidating the relationships between malignant transformation and metastasis and cellular adhesion processes, several areas still await exploration. Here, we highlight recently discovered roles of adhesion molecules in collective cancer cell migration and discuss the utility of three-dimensional models in studying cell-cell adhesion. We also describe recent therapeutic approaches targeting adhesion molecules.
Asunto(s)
Movimiento Celular , Neoplasias/patología , Animales , Adhesión Celular , Comunicación Celular , Transformación Celular Neoplásica/patología , Humanos , Microambiente TumoralRESUMEN
The dopamine hypothesis states that decreased dopaminergic neurotransmission reduces schizophrenia symptoms. Neurokinin-3 receptor (NK3) antagonists reduce dopamine release and have shown positive effects in pre-clinical and clinical trials. We employed 2D and 3D-QSAR analysis on a series of 40 non-peptide NK3 antagonists. Multivariate statistical analysis, PCA and HCA, were performed to rational training/test set splitting and PLS regression was employed to construct all QSAR models. We constructed one highly predictive CoMFA model (q(2)= 0.810 and r(2)= 0.929) and acceptable HQSAR and CoMSIA models (HQSAR q(2)= 0.644 and r(2)= 0.910; CoMSIA q(2)= 0.691, r(2)= 0.911). The three different techniques provided convergent physicochemical results. All models indicate cyclopropane, piperidine and di-chloro-phenyl ring attached to cyclopropane ring and also the amide group attached to the piperidine ring could play an important role in ligand-receptor interactions. These findings may contribute to develop potential NK3 receptor antagonists for schizophrenia.
Asunto(s)
Relación Estructura-Actividad Cuantitativa , Receptores de Neuroquinina-3/antagonistas & inhibidores , Esquizofrenia/tratamiento farmacológico , Ciclopropanos/química , Humanos , Piperidinas/químicaRESUMEN
Tuberculosis (TB), a 19th century disease, is still present in the beginning of the Third Millennium. It has been considered pandemic, since around two billion people are infected with M. tuberculosis. Multi-drug resistant TB has been the biggest challenge for chemotherapy. In order to face this severe health problem, many institutions, private and public ones, have been investing in the search for new and better drug candidates. The pipeline of potential anti-TB drugs presents new molecules and formulations that have been submitted to pre-clinical and clinical assays. Medicinal Chemistry has an important role towards the objective of finding new leads through classic and modern processes. This paper reviews some aspects of this search, emphasizing the features of the main compounds under investigation and those that are in preliminary and final clinical trials and includes the contribution of our laboratory (LAPEN) in the area of designing new anti-TB drug candidates.
RESUMEN
A tuberculose (TB) é uma das maiores causas de morte por infecção no mundo, sendo que, em 2015, registraram-se 10,4 milhões de novos casos. O agente etiológico da doença, o Mycobacterium tuberculosis (Mtb), apresenta altos níveis de resistência frente aos quimioterápicos disponíveis para o tratamento da TB. Além disso, a terapia atual da doença explora poucos alvos essenciais ao Mtb. Neste sentido, explorar novos alvos, essenciais ao crescimento e sobrevivência da micobactéria é de grande interesse e poderia gerar fármacos mais efetivos, eficazes contra cepas resistentes e a forma latente da TB. Para este fim, o presente trabalho propôs o desenvolvimento de inibidores da enzima fosfopanteteína adenililtransferase (PPAT), a qual possui caráter regulatório na via de biossíntese da Coenzima A (CoA) da micobactéria. Inicialmente, propuseram-se 50 estruturas de potenciais inibidores da PPAT de M. tuberculosis (MtPPAT), baseando-se na estrutura de seu substrato, a fosfopanteteína, e na estrutura do sítio ativo da enzima. Em seguida, propuseram-se outros 28 ligantes. A fim de se prever as potenciais complementaridades entre os 78 inibidores propostos e o sítio ativo da MtPPAT, empregou-se a estratégia de docking. Posteriormente, realizaram-se cálculos semi-empíricos, com os complexos dos ligantes que se mostraram mais interessantes nas simulações de docking, a fim de se obter informações sobre a entalpia de interação dos ligantes com o sítio ativo da MtPPAT. A partir dos resultados obtidos nos estudos computacionais, selecionaram-se os inibidores que se mostraram mais promissores. A síntese destes ligantes e a de seus fragmentos foi realizada. Avaliaram-se a atividade microbiológica in vitro, bem como a citotoxicidade dos ligantes sintetizados. Alguns dos compostos sintetizados apresentaram atividade frente às cepas sensíveis e resistentes do Mtb na casa de micromolar. Todos os compostos ativos não foram considerados citotóxicos. A fim de validar o planejamento e o alvo dos possíveis inibidores, verificando a atividade inibitória desses frente à enzima MtPPAT, realizou-se a produção e purificação da enzima. Por fim, realizaram-se ensaios de inibição enzimática frente à MtPPAT, os quais permitiram a identificação dos primeiros inibidores da enzima já descritos, com atividade na casa de micromolar, validando-se o alvo em questão
Tuberculosis is one of the major causes of death by infection worldwide. In 2015, 10.4 thousand new cases of the disease were registered. The tuberculosis' causing agent Mycobacterium tuberculosis presents high levels of resistance for the available chemotherapy. Thereof, exploit new M. tuberculosis targets is of utmost importance to overcome drug resistant tuberculosis. In this sense, the enzyme phosphopantetheine adenylyltransferase (PPAT) generates scientific interest since it displays a regulatory role in the M. tuberculosis coenzyme A (CoA) biosynthesis. Therefore, the purpose of the present study was the development of M. tuberculosis PPAT (MtPPAT) inhibitors. Initially, 50 potentially MtPPAT inhibitors were designed based on MtPPAT's substrate and the enzyme's active site. After preliminary results, more 28 compounds were designed. Docking simulations were performed with the 78 compounds synthesized, leading to the prediction of the interaction between the proposed inhibitors and MtPPAT active site. Latelly, semi-empirical calculations were performed with the most promising compounds. These calculations were carried out to obtain information about the enthalpy interactions between compounds and MtPPAT active site. Computational studies led to the selection of the most promising inhibitors. Those compounds and some of their fragments were synthesized, purified, and characterized. The synthesized compounds had their in vitro microbiological activity and cytotoxicity evaluated. Some of the synthesized compounds showed activity against the Mtb sensitive and resistant strains in micromolar range. Besides that, the active compounds were not considered cytotoxic. To validate the potential inhibitors' design and evaluate their capacity to inhibit MtPPAT, the enzyme was produced and purified. MtPPAT inhibitory assays were performed, leading to the first inhibitors of the enzyme, with activity in micromolar range, validating the target