Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Cell ; 184(14): 3591-3592, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34242559

RESUMEN

ESCRT-III proteins, which form filaments that deform, bud, and sever membranes, are found in eukaryotes and some archaea. Three studies in this issue of Cell reveal that PspA and Vipp1 are bacterial and cyanobacterial members of the ESCRT-III superfamily, indicating it is even more ubiquitous and ancient than previously thought.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte
2.
Nat Rev Mol Cell Biol ; 21(1): 7-24, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31732717

RESUMEN

Organelles compartmentalize eukaryotic cells, enhancing their ability to respond to environmental and developmental changes. One way in which organelles communicate and integrate their activities is by forming close contacts, often called 'membrane contact sites' (MCSs). Interest in MCSs has grown dramatically in the past decade as it is has become clear that they are ubiquitous and have a much broader range of critical roles in cells than was initially thought. Indeed, functions for MCSs in intracellular signalling (particularly calcium signalling, reactive oxygen species signalling and lipid signalling), autophagy, lipid metabolism, membrane dynamics, cellular stress responses and organelle trafficking and biogenesis have now been reported.


Asunto(s)
Membrana Celular/metabolismo , Metabolismo de los Lípidos , Transducción de Señal , Estrés Fisiológico/fisiología , Animales , Autofagosomas/metabolismo , Autofagia , Transporte Biológico , Señalización del Calcio , Membrana Celular/química , Retículo Endoplásmico/metabolismo , Enzimas/metabolismo , Células Eucariotas/metabolismo , Humanos , Membranas Mitocondriales/metabolismo , Especies Reactivas de Oxígeno/metabolismo
3.
Cell ; 147(6): 1226-31, 2011 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-22153070

RESUMEN

How is the characteristic shape of an organelle generated? Recent work has provided insight into how the tubular network of the endoplasmic reticulum (ER) is formed. The tubules themselves are shaped by the reticulons and DP1/Yop1p, whereas their fusion into a network is brought about by membrane-bound GTPases that include the atlastins, Sey1p, and RHD3.


Asunto(s)
Retículo Endoplásmico/metabolismo , Animales , Citoesqueleto/metabolismo , Proteínas de Unión al GTP/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Orgánulos/metabolismo , Células Vegetales/metabolismo , Vertebrados , Levaduras/metabolismo
4.
Cell ; 143(6): 870-4, 2010 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-21145454

RESUMEN

Eukaryotic cells possess a remarkable diversity of lipids, which distribute among cellular membranes by well-characterized vesicle trafficking pathways. However, transport of lipids by alternate, or "nonvesicular," routes is also critical for lipid synthesis, metabolism, and proper membrane partitioning. In the past few years, considerable progress has been made in characterizing the mechanisms of nonvesicular lipid transport and how it may go awry in particular diseases, but many fundamental questions remain for this rising field.


Asunto(s)
Proteínas Portadoras/metabolismo , Células Eucariotas/química , Metabolismo de los Lípidos , Animales , Transporte Biológico , Membrana Celular/química , Humanos , Lípidos/análisis , Orgánulos/metabolismo
5.
Cell ; 143(5): 774-88, 2010 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-21111237

RESUMEN

The endoplasmic reticulum (ER) consists of the nuclear envelope and a peripheral network of tubules and membrane sheets. The tubules are shaped by the curvature-stabilizing proteins reticulons and DP1/Yop1p, but how the sheets are formed is unclear. Here, we identify several sheet-enriched membrane proteins in the mammalian ER, including proteins that translocate and modify newly synthesized polypeptides, as well as coiled-coil membrane proteins that are highly upregulated in cells with proliferated ER sheets, all of which are localized by membrane-bound polysomes. These results indicate that sheets and tubules correspond to rough and smooth ER, respectively. One of the coiled-coil proteins, Climp63, serves as a "luminal ER spacer" and forms sheets when overexpressed. More universally, however, sheet formation appears to involve the reticulons and DP1/Yop1p, which localize to sheet edges and whose abundance determines the ratio of sheets to tubules. These proteins may generate sheets by stabilizing the high curvature of edges.


Asunto(s)
Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Animales , Línea Celular , Chlorocebus aethiops , Retículo Endoplásmico/química , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Microscopía Electrónica , Polirribosomas/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo
6.
Cell ; 138(3): 549-61, 2009 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-19665976

RESUMEN

The endoplasmic reticulum (ER) consists of tubules that are shaped by the reticulons and DP1/Yop1p, but how the tubules form an interconnected network is unknown. Here, we show that mammalian atlastins, which are dynamin-like, integral membrane GTPases, interact with the tubule-shaping proteins. The atlastins localize to the tubular ER and are required for proper network formation in vivo and in vitro. Depletion of the atlastins or overexpression of dominant-negative forms inhibits tubule interconnections. The Sey1p GTPase in S. cerevisiae is likely a functional ortholog of the atlastins; it shares the same signature motifs and membrane topology and interacts genetically and physically with the tubule-shaping proteins. Cells simultaneously lacking Sey1p and a tubule-shaping protein have ER morphology defects. These results indicate that formation of the tubular ER network depends on conserved dynamin-like GTPases. Since atlastin-1 mutations cause a common form of hereditary spastic paraplegia, we suggest ER-shaping defects as a neuropathogenic mechanism.


Asunto(s)
Dinamina I/metabolismo , Retículo Endoplásmico/metabolismo , GTP Fosfohidrolasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Dinaminas/metabolismo , Saccharomyces cerevisiae/metabolismo
7.
Annu Rev Cell Dev Biol ; 26: 157-77, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-19575662

RESUMEN

Oxysterol-binding protein (OSBP)-related proteins (ORPs) are lipid-binding proteins that are conserved from yeast to humans. They are implicated in many cellular processes including signaling, vesicular trafficking, lipid metabolism, and nonvesicular sterol transport. All ORPs contain an OSBP-related domain (ORD) that has a hydrophobic pocket that binds a single sterol. ORDs also contain additional membrane-binding surfaces, some of which bind phosphoinositides and may regulate sterol binding. Studies in yeast suggest that ORPs function as sterol transporters, perhaps in regions where organelle membranes are closely apposed. Yeast ORPs also participate in vesicular trafficking, although their role is unclear. In mammalian cells, some ORPs function as sterol sensors that regulate the assembly of protein complexes in response to changes in cholesterol levels. This review will summarize recent advances in our understanding of how ORPs bind lipids and membranes and how they function in diverse cellular processes.


Asunto(s)
Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Esteroles/metabolismo , Animales , Humanos , Metabolismo de los Lípidos , Membranas/metabolismo
8.
J Cell Sci ; 133(21)2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-33033181

RESUMEN

Lipid droplets (LDs) are implicated in conditions of lipid and protein dysregulation. The fat storage-inducing transmembrane (FIT; also known as FITM) family induces LD formation. Here, we establish a model system to study the role of the Saccharomyces cerevisiae FIT homologues (ScFIT), SCS3 and YFT2, in the proteostasis and stress response pathways. While LD biogenesis and basal endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR) remain unaltered in ScFIT mutants, SCS3 was found to be essential for proper stress-induced UPR activation and for viability in the absence of the sole yeast UPR transducer IRE1 Owing to not having a functional UPR, cells with mutated SCS3 exhibited an accumulation of triacylglycerol within the ER along with aberrant LD morphology, suggesting that there is a UPR-dependent compensatory mechanism that acts to mitigate lack of SCS3 Additionally, SCS3 was necessary to maintain phospholipid homeostasis. Strikingly, global protein ubiquitylation and the turnover of both ER and cytoplasmic misfolded proteins is impaired in ScFITΔ cells, while a screen for interacting partners of Scs3 identifies components of the proteostatic machinery as putative targets. Together, our data support a model where ScFITs play an important role in lipid metabolism and proteostasis beyond their defined roles in LD biogenesis.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Lípidos de la Membrana , Saccharomyces cerevisiae , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/genética , Homeostasis , Lípidos de la Membrana/metabolismo , Proteostasis , Saccharomyces cerevisiae/genética , Respuesta de Proteína Desplegada/genética
10.
Int J Mol Sci ; 22(16)2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34445723

RESUMEN

Lipid droplets (LDs) are ubiquitous organelles that fulfill essential roles in response to metabolic cues. The identification of several neutral lipid synthesizing and regulatory protein complexes have propelled significant advance on the mechanisms of LD biogenesis in the endoplasmic reticulum (ER). However, our understanding of signaling networks, especially transcriptional mechanisms, regulating membrane biogenesis is very limited. Here, we show that the nutrient-sensing Target of Rapamycin Complex 1 (TORC1) regulates LD formation at a transcriptional level, by targeting DGA1 expression, in a Sit4-, Mks1-, and Sfp1-dependent manner. We show that cytosolic pH (pHc), co-regulated by the plasma membrane H+-ATPase Pma1 and the vacuolar ATPase (V-ATPase), acts as a second messenger, upstream of protein kinase A (PKA), to adjust the localization and activity of the major transcription factor repressor Opi1, which in turn controls the metabolic switch between phospholipid metabolism and lipid storage. Together, this work delineates hitherto unknown molecular mechanisms that couple nutrient availability and pHc to LD formation through a transcriptional circuit regulated by major signaling transduction pathways.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Gotas Lipídicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Concentración de Iones de Hidrógeno , Gotas Lipídicas/fisiología , Metabolismo de los Lípidos/fisiología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/fisiología , Proteínas de la Membrana/metabolismo , Proteína Fosfatasa 2/metabolismo , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Transducción de Señal , Factores de Transcripción/fisiología
11.
Proc Natl Acad Sci U S A ; 114(46): E9863-E9872, 2017 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-29093165

RESUMEN

Mitochondria constantly divide and fuse. Homotypic fusion of the outer mitochondrial membranes requires the mitofusin (MFN) proteins, a family of dynamin-like GTPases. MFNs are anchored in the membrane by transmembrane (TM) segments, exposing both the N-terminal GTPase domain and the C-terminal tail (CT) to the cytosol. This arrangement is very similar to that of the atlastin (ATL) GTPases, which mediate fusion of endoplasmic reticulum (ER) membranes. We engineered various MFN-ATL chimeras to gain mechanistic insight into MFN-mediated fusion. When MFN1 is localized to the ER by TM swapping with ATL1, it functions in the maintenance of ER morphology and fusion. In addition, an amphipathic helix in the CT of MFN1 is exchangeable with that of ATL1 and critical for mitochondrial localization of MFN1. Furthermore, hydrophobic residues N-terminal to the TM segments of MFN1 play a role in membrane targeting but not fusion. Our findings provide important insight into MFN-mediated membrane fusion.


Asunto(s)
Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/metabolismo , Fusión de Membrana/fisiología , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Animales , Células COS , Chlorocebus aethiops , Retículo Endoplásmico/metabolismo , GTP Fosfohidrolasas/metabolismo , Microscopía Fluorescente , Membranas Mitocondriales/química , Membranas Mitocondriales/metabolismo , Modelos Moleculares , Conformación Proteica , Alineación de Secuencia , Levaduras
12.
J Biol Chem ; 292(49): 19974-19975, 2017 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-29222193

RESUMEN

Squalene monooxygenase (SM), which synthesizes a cholesterol precursor, is degraded when cholesterol levels in the endoplasmic reticulum (ER) membrane are high, but the signal for degradation was not known. In this issue of JBC, Brown and co-workers identify an N-terminal domain in SM that interconverts in a cholesterol-sensitive manner between a membrane-binding amphipathic helix and a soluble degradation-prone segment, providing the first example of a cholesterol-degron collaboration.


Asunto(s)
Colesterol , Retículo Endoplásmico , Humanos , Complejo de la Endopetidasa Proteasomal , Escualeno-Monooxigenasa
13.
J Lipid Res ; 58(3): 553-562, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28119445

RESUMEN

Close contacts between organelles, often called membrane contact sites (MCSs), are regions where lipids are exchanged between organelles. Here, we identify a novel mechanism by which cells promote phospholipid exchange at MCSs. Previous studies have shown that phosphatidylserine (PS) synthase activity is highly enriched in portions of the endoplasmic reticulum (ER) in contact with mitochondria. The objective of this study was to determine whether this enrichment promotes PS transport out of the ER. We found that PS transport to mitochondria was more efficient when PS synthase was fused to a protein in the ER at ER-mitochondria contacts than when it was fused to a protein in all portions of the ER. Inefficient PS transport to mitochondria was corrected by increasing tethering between these organelles. PS transport to endosomes was similarly enhanced by PS production in regions of the ER in contact with endosomes. Together, these findings indicate that PS production at MCSs promotes PS transport out of the ER and suggest that phospholipid production at MCSs may be a general mechanism of channeling lipids to specific cellular compartments.


Asunto(s)
CDPdiacilglicerol-Serina O-Fosfatidiltransferasa/genética , Retículo Endoplásmico/metabolismo , Metabolismo de los Lípidos/genética , Fosfatidilserinas/biosíntesis , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Bacterianas/genética , Transporte Biológico/genética , CDPdiacilglicerol-Serina O-Fosfatidiltransferasa/metabolismo , Membrana Celular/química , Membrana Celular/enzimología , Retículo Endoplásmico/enzimología , Endosomas/metabolismo , Escherichia coli/enzimología , Glicosiltransferasas/genética , Lipogénesis/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Membranas Mitocondriales/enzimología , Fosfatidilserinas/química , Fosfatidilserinas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
Biochim Biophys Acta ; 1861(12 Pt A): 1959-1967, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27678054

RESUMEN

Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) are two of the most abundant phospholipids in cells. Although both lipids can be synthesized in the endoplasmic reticulum (ER), in S. cerevisiae PE can also be produced in mitochondria and endosomes; this PE can be transported back to the ER where it is converted to PC. In this study we found that dithiothreitol (DTT), which induces ER stress, decreases PE export from mitochondria to the ER. This results in decreased levels of total cellular PC and mitochondrial PC. These decreases were not caused by changes in levels of PC synthesizing or degrading enzymes. PE export from mitochondria to the ER during ER stress was further reduced in cells lacking Mdm10p, a component of an ER-mitochondrial tethering complex that may facilitated lipid exchange between these compartments. We also found that reducing mitochondrial PC levels induces mitophagy. In conclusion, we show that ER stress affected PE export from mitochondria to ER and the Mdm10p is important for this process.


Asunto(s)
Transporte Biológico/fisiología , Estrés del Retículo Endoplásmico/fisiología , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/fisiología , Mitocondrias/metabolismo , Fosfatidiletanolaminas/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Biológico/efectos de los fármacos , Ditiotreitol/farmacología , Retículo Endoplásmico/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Membranas Mitocondriales/efectos de los fármacos , Membranas Mitocondriales/metabolismo , Mitofagia/efectos de los fármacos , Fosfatidilcolinas/metabolismo , Fosfolípidos/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
PLoS Biol ; 12(10): e1001969, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25313861

RESUMEN

Mitochondrial membrane biogenesis and lipid metabolism require phospholipid transfer from the endoplasmic reticulum (ER) to mitochondria. Transfer is thought to occur at regions of close contact of these organelles and to be nonvesicular, but the mechanism is not known. Here we used a novel genetic screen in S. cerevisiae to identify mutants with defects in lipid exchange between the ER and mitochondria. We show that a strain missing multiple components of the conserved ER membrane protein complex (EMC) has decreased phosphatidylserine (PS) transfer from the ER to mitochondria. Mitochondria from this strain have significantly reduced levels of PS and its derivative phosphatidylethanolamine (PE). Cells lacking EMC proteins and the ER-mitochondria tethering complex called ERMES (the ER-mitochondria encounter structure) are inviable, suggesting that the EMC also functions as a tether. These defects are corrected by expression of an engineered ER-mitochondrial tethering protein that artificially tethers the ER to mitochondria. EMC mutants have a significant reduction in the amount of ER tethered to mitochondria even though ERMES remained intact in these mutants, suggesting that the EMC performs an additional tethering function to ERMES. We find that all Emc proteins interact with the mitochondrial translocase of the outer membrane (TOM) complex protein Tom5 and this interaction is important for PS transfer and cell growth, suggesting that the EMC forms a tether by associating with the TOM complex. Together, our findings support that the EMC tethers ER to mitochondria, which is required for phospholipid synthesis and cell growth.


Asunto(s)
Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , Fosfatidilserinas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Estudio de Asociación del Genoma Completo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Saccharomyces cerevisiae
16.
EMBO Rep ; 14(5): 434-40, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23519169

RESUMEN

Synthesis of phospholipids, sterols and sphingolipids is thought to occur at contact sites between the endoplasmic reticulum (ER) and other organelles because many lipid-synthesizing enzymes are enriched in these contacts. In only a few cases have the enzymes been localized to contacts in vivo and in no instances have the contacts been demonstrated to be required for enzyme function. Here, we show that plasma membrane (PM)--ER contact sites in yeast are required for phosphatidylcholine synthesis and regulate the activity of the phosphatidylethanolamine N-methyltransferase enzyme, Opi3. Opi3 activity requires Osh3, which localizes to PM-ER contacts where it might facilitate in trans catalysis by Opi3. Thus, membrane contact sites provide a structural mechanism to regulate lipid synthesis.


Asunto(s)
Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Fosfatidilcolinas/biosíntesis , Saccharomyces cerevisiae/metabolismo , Membrana Celular/ultraestructura , Retículo Endoplásmico/ultraestructura , Técnicas de Inactivación de Genes , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Fosfatidato Fosfatasa/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
Proc Natl Acad Sci U S A ; 109(32): E2146-54, 2012 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-22802620

RESUMEN

The homotypic fusion of endoplasmic reticulum (ER) membranes is mediated by atlastin (ATL), which consists of an N-terminal cytosolic domain containing a GTPase module and a three-helix bundle followed by two transmembrane (TM) segments and a C-terminal tail (CT). Fusion depends on a GTP hydrolysis-induced conformational change in the cytosolic domain. Here, we show that the CT and TM segments also are required for efficient fusion and provide insight into their mechanistic roles. The essential feature of the CT is a conserved amphipathic helix. A synthetic peptide corresponding to the helix, but not to unrelated amphipathic helices, can act in trans to restore the fusion activity of tailless ATL. The CT promotes vesicle fusion by interacting directly with and perturbing the lipid bilayer without causing significant lysis. The TM segments do not serve as mere membrane anchors for the cytosolic domain but rather mediate the formation of ATL oligomers. Point mutations in either the C-terminal helix or the TMs impair ATL's ability to generate and maintain ER morphology in vivo. Our results suggest that protein-lipid and protein-protein interactions within the membrane cooperate with the conformational change of the cytosolic domain to achieve homotypic ER membrane fusion.


Asunto(s)
Proteínas de Drosophila/metabolismo , Retículo Endoplásmico/fisiología , GTP Fosfohidrolasas/metabolismo , Metabolismo de los Lípidos/fisiología , Fusión de Membrana/fisiología , Modelos Moleculares , Secuencia de Aminoácidos , Animales , Dicroismo Circular , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster , Electroforesis en Gel de Poliacrilamida , Escherichia coli , Fluoresceínas/metabolismo , Transferencia Resonante de Energía de Fluorescencia , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/genética , Componentes del Gen , Humanos , Inmunoprecipitación , Liposomas/metabolismo , Microscopía Fluorescente , Datos de Secuencia Molecular , Especificidad de la Especie , Levaduras
18.
J Cell Sci ; 125(Pt 1): 49-58, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-22250200

RESUMEN

Membrane contact sites (MCSs), where the membranes of two organelles are closely apposed, are regions where small molecules such as lipids or calcium are exchanged between organelles. We have identified a conserved membrane-binding domain found exclusively in proteins at MCSs in Saccharomyces cerevisiae. The synaptotagmin-like-mitochondrial-lipid binding protein (SMP) domain is conserved across species. We show that all seven proteins that contain this domain in yeast localize to one of three MCSs. Human proteins with SMP domains also localize to MCSs when expressed in yeast. The SMP domain binds membranes and is necessary for protein targeting to MCSs. Proteins containing this domain could be involved in lipid metabolism. This is the first protein domain found exclusively in proteins at MCSs.


Asunto(s)
Membranas Intracelulares/metabolismo , Orgánulos/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Autofagia , Sitios de Unión , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Secuencia Conservada , Retículo Endoplásmico/metabolismo , Humanos , Metabolismo de los Lípidos , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Orgánulos/química , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Vacuolas/metabolismo
19.
J Cell Sci ; 125(Pt 20): 4791-9, 2012 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-22797914

RESUMEN

The endoplasmic reticulum (ER) forms a network of sheets and tubules that extends throughout the cell. Proteins required to maintain this complex structure include the reticulons, reticulon-like proteins, and dynamin-like GTPases called atlastins in mammals and Sey1p in Saccharomyces cerevisiae. Yeast cells missing these proteins have abnormal ER structure, particularly defects in the formation of ER tubules, but grow about as well as wild-type cells. We screened for mutations that cause cells that have defects in maintaining ER tubules to grow poorly. Among the genes we found were members of the ER mitochondria encounter structure (ERMES) complex that tethers the ER and mitochondria. Close contacts between the ER and mitochondria are thought to be sites where lipids are moved from the ER to mitochondria, a process that is required for mitochondrial membrane biogenesis. We show that ER to mitochondria phospholipid transfer slows significantly in cells missing both ER-shaping proteins and the ERMES complex. These cells also have altered steady-state levels of phospholipids. We found that the defect in ER to mitochondria phospholipid transfer in a strain missing ER-shaping proteins and a component of the ERMES complex was corrected by expression of a protein that artificially tethers the ER and mitochondria. Our findings indicate that ER-shaping proteins play a role in maintaining functional contacts between the ER and mitochondria and suggest that the shape of the ER at ER-mitochondria contact sites affects lipid exchange between these organelles.


Asunto(s)
Retículo Endoplásmico , Mitocondrias , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Transporte Vesicular , Dinaminas/genética , Dinaminas/metabolismo , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Membranas Mitocondriales/metabolismo , Membranas Mitocondriales/ultraestructura , Mutación , Fosfolípidos/genética , Fosfolípidos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
20.
bioRxiv ; 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38370643

RESUMEN

Lipid transport proteins (LTPs) facilitate nonvesicular lipid exchange between cellular compartments and have critical roles in lipid homeostasis1. A new family of bridge-like LTPs (BLTPs) is thought to form lipid-transporting conduits between organelles2. One, BLTP2, is conserved across species but its function is not known. Here, we show that BLTP2 and its homolog directly regulate plasma membrane (PM) fluidity by increasing the phosphatidylethanolamine (PE) level in the PM. BLTP2 localizes to endoplasmic reticulum (ER)-PM contact sites34, 5, suggesting it transports PE from the ER to the PM. We find BLTP2 works in parallel with another pathway that regulates intracellular PE distribution and PM fluidity6, 7. BLTP2 expression correlates with breast cancer aggressiveness8-10. We found BLTP2 facilitates growth of a human cancer cell line and sustains its aggressiveness in an in vivo model of metastasis, suggesting maintenance of PM fluidity by BLTP2 may be critical for tumorigenesis in humans.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA