Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 300(6): 107346, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38718859

RESUMEN

Lethal neurodegenerative prion diseases result from the continuous accumulation of infectious and variably protease-resistant prion protein aggregates (PrPD) which are misfolded forms of the normally detergent soluble and protease-sensitive cellular prion protein. Molecular chaperones like Grp78 have been found to reduce the accumulation of PrPD, but how different cellular environments and other chaperones influence the ability of Grp78 to modify PrPD is poorly understood. In this work, we investigated how pH and protease-mediated structural changes in PrPD from two mouse-adapted scrapie prion strains, 22L and 87V, influenced processing by Grp78 in the presence or absence of chaperones Hsp90, DnaJC1, and Stip1. We developed a cell-free in vitro system to monitor chaperone-mediated structural changes to, and disaggregation of, PrPD. For both strains, Grp78 was most effective at structurally altering PrPD at low pH, especially when additional chaperones were present. While Grp78, DnaJC1, Stip1, and Hsp90 were unable to disaggregate the majority of PrPD from either strain, pretreatment of PrPD with proteases increased disaggregation of 22L PrPD compared to 87V, indicating strain-specific differences in aggregate structure were impacting chaperone activity. Hsp90 also induced structural changes in 87V PrPD as indicated by an increase in the susceptibility of its n-terminus to proteases. Our data suggest that, while chaperones like Grp78, DnaJC1, Stip1, and Hsp90 disaggregate only a small fraction of PrPD, they may still facilitate its clearance by altering aggregate structure and sensitizing PrPD to proteases in a strain and pH-dependent manner.


Asunto(s)
Chaperón BiP del Retículo Endoplásmico , Proteínas de Choque Térmico , Chaperonas Moleculares , Chaperón BiP del Retículo Endoplásmico/metabolismo , Chaperón BiP del Retículo Endoplásmico/genética , Animales , Concentración de Iones de Hidrógeno , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Ratones , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/química , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas del Choque Térmico HSP40/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/química , Agregado de Proteínas
2.
Cell Tissue Res ; 392(1): 269-283, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35107622

RESUMEN

The properties of infectious prions and the pathology of the diseases they cause are dependent upon the unique conformation of each prion strain. How the pathology of prion disease correlates with different strains and genetic backgrounds has been investigated via in vivo assays, but how interactions between specific prion strains and cell types contribute to the pathology of prion disease has been dissected more effectively using in vitro cell lines. Observations made through in vivo and in vitro assays have informed each other with regard to not only how genetic variation influences prion properties, but also how infectious prions are taken up by cells, modified by cellular processes and propagated, and the cellular components they rely on for persistent infection. These studies suggest that persistent cellular infection results from a balance between prion propagation and degradation. This balance may be shifted depending upon how different cell lines process infectious prions, potentially altering prion stability, and how fast they can be transported to the lysosome. Thus, in vitro studies have given us a deeper understanding of the interactions between different prions and cell types and how they may influence prion disease phenotypes in vivo.


Asunto(s)
Enfermedades por Prión , Priones , Humanos , Priones/metabolismo , Enfermedades por Prión/genética , Enfermedades por Prión/metabolismo , Línea Celular
3.
Biochemistry ; 60(5): 398-411, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33497187

RESUMEN

Prion diseases arise when PrPSc, an aggregated, infectious, and insoluble conformer of the normally soluble mammalian prion protein, PrPC, catalyzes the conversion of PrPC into more PrPSc, which then accumulates in the brain leading to disease. PrPSc is the primary, if not sole, component of the infectious prion. Despite the stability and protease insensitivity of PrPSc aggregates, they can be degraded after cellular uptake. However, how cells disassemble and degrade PrPSc is poorly understood. In this work, we analyzed how the protease sensitivity and size distribution of PrPSc aggregates from two different mouse-adapted prion strains, 22L, that can persistently infect cells and 87V, that cannot, changed during cellular uptake. We show that within the first 4 h following uptake large PrPSc aggregates from both prion strains become less resistant to digestion by proteinase K (PK) through a mechanism that is dependent upon the acidic environment of endocytic vesicles. We further show that during disassembly, PrPSc aggregates from both strains become more resistant to PK digestion through the apparent removal of protease-sensitive PrPSc, with PrPSc from the 87V strain disassembled more readily than PrPSc from the 22L strain. Taken together, our data demonstrate that the sizes and stabilities of PrPSc from different prion strains change during cellular uptake and degradation, thereby potentially impacting the ability of prions to infect cells.


Asunto(s)
Proteínas PrPSc/química , Proteínas PrPSc/metabolismo , Agregado de Proteínas/fisiología , Animales , Transporte Biológico , Encéfalo/metabolismo , Ratones , Ratones Endogámicos C57BL , Péptido Hidrolasas/metabolismo , Proteínas PrPC/metabolismo , Enfermedades por Prión/metabolismo , Priones/química , Priones/metabolismo
4.
PLoS Pathog ; 13(7): e1006491, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28704563

RESUMEN

Prions, characterized by self-propagating protease-resistant prion protein (PrP) conformations, are agents causing prion disease. Recent studies generated several such self-propagating protease-resistant recombinant PrP (rPrP-res) conformers. While some cause prion disease, others fail to induce any pathology. Here we showed that although distinctly different, the pathogenic and non-pathogenic rPrP-res conformers were similarly recognized by a group of conformational antibodies against prions and shared a similar guanidine hydrochloride denaturation profile, suggesting a similar overall architecture. Interestingly, two independently generated non-pathogenic rPrP-res were almost identical, indicating that the particular rPrP-res resulted from cofactor-guided PrP misfolding, rather than stochastic PrP aggregation. Consistent with the notion that cofactors influence rPrP-res conformation, the propagation of all rPrP-res formed with phosphatidylglycerol/RNA was cofactor-dependent, which is different from rPrP-res generated with a single cofactor, phosphatidylethanolamine. Unexpectedly, despite the dramatic difference in disease-causing capability, RT-QuIC assays detected large increases in seeding activity in both pathogenic and non-pathogenic rPrP-res inoculated mice, indicating that the non-pathogenic rPrP-res is not completely inert in vivo. Together, our study supported a role of cofactors in guiding PrP misfolding, indicated that relatively small structural features determine rPrP-res' pathogenicity, and revealed that the in vivo seeding ability of rPrP-res does not necessarily result in pathogenicity.


Asunto(s)
Endopeptidasas/química , Enfermedades por Prión/metabolismo , Proteínas Priónicas/química , Animales , Biocatálisis , Dimerización , Endopeptidasas/metabolismo , Ratones , Fosfatidilgliceroles/metabolismo , Enfermedades por Prión/genética , Proteínas Priónicas/genética , Proteínas Priónicas/metabolismo , Unión Proteica , Conformación Proteica , ARN/química , ARN/genética , ARN/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
5.
J Virol ; 91(18)2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28659480

RESUMEN

Mitochondria are crucial to proper neuronal function and overall brain health. Mitochondrial dysfunction within the brain has been observed in many neurodegenerative diseases, including prion disease. Several markers of decreased mitochondrial activity during prion infection have been reported, yet the bioenergetic respiratory status of mitochondria from prion-infected animals is unknown. Here we show that clinically ill transgenic mice overexpressing hamster prion protein (Tg7) infected with the hamster prion strain 263K suffer from a severe deficit in mitochondrial oxygen consumption in response to the respiratory complex II substrate succinate. Characterization of the mitochondrial proteome of purified brain mitochondria from infected and uninfected Tg7 mice showed significant differences in the relative abundance of key mitochondrial electron transport proteins in 263K-infected animals relative to that in controls. Our results suggest that at clinical stages of prion infection, dysregulation of respiratory chain proteins may lead to impairment of mitochondrial respiration in the brain.IMPORTANCE Mitochondrial dysfunction is present in most major neurodegenerative diseases, and some studies have suggested that mitochondrial processes may be altered during prion disease. Here we show that hamster prion-infected transgenic mice overexpressing the hamster prion protein (Tg7 mice) suffer from mitochondrial respiratory deficits. Tg7 mice infected with the 263K hamster prion strain have little or no signs of mitochondrial dysfunction at the disease midpoint but suffer from a severe deficit in mitochondrial respiration at the clinical phase of disease. A proteomic analysis of the isolated brain mitochondria from clinically affected animals showed that several proteins involved in electron transport, mitochondrial dynamics, and mitochondrial protein synthesis were dysregulated. These results suggest that mitochondrial dysfunction, possibly exacerbated by prion protein overexpression, occurs at late stages during 263K prion disease and that this dysfunction may be the result of dysregulation of mitochondrial proteins.


Asunto(s)
Encéfalo/patología , Respiración de la Célula , Mitocondrias/metabolismo , Enfermedades por Prión/patología , Animales , Modelos Animales de Enfermedad , Transporte de Electrón , Ratones Transgénicos , Mitocondrias/química , Oxígeno/metabolismo , Proteoma/análisis
6.
J Virol ; 91(2)2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-27847358

RESUMEN

Glycosylphosphatidylinositol (GPI) anchoring of the prion protein (PrPC) influences PrPC misfolding into the disease-associated isoform, PrPres, as well as prion propagation and infectivity. GPI proteins are found in cholesterol- and sphingolipid-rich membrane regions called rafts. Exchanging the GPI anchor for a nonraft transmembrane sequence redirects PrPC away from rafts. Previous studies showed that nonraft transmembrane PrPC variants resist conversion to PrPres when transfected into scrapie-infected N2a neuroblastoma cells, likely due to segregation of transmembrane PrPC and GPI-anchored PrPres in distinct membrane environments. Thus, it remained unclear whether transmembrane PrPC might convert to PrPres if seeded by an exogenous source of PrPres not associated with host cell rafts and without the potential influence of endogenous expression of GPI-anchored PrPC To further explore these questions, constructs containing either a C-terminal wild-type GPI anchor signal sequence or a nonraft transmembrane sequence containing a flexible linker were expressed in a cell line derived from PrP knockout hippocampal neurons, NpL2. NpL2 cells have physiological similarities to primary neurons, representing a novel and advantageous model for studying transmissible spongiform encephalopathy (TSE) infection. Cells were infected with inocula from multiple prion strains and in different biochemical states (i.e., membrane bound as in brain microsomes from wild-type mice or purified GPI-anchorless amyloid fibrils). Only GPI-anchored PrPC supported persistent PrPres propagation. Our data provide strong evidence that in cell culture GPI anchor-directed membrane association of PrPC is required for persistent PrPres propagation, implicating raft microdomains as a location for conversion. IMPORTANCE: Mechanisms of prion propagation, and what makes them transmissible, are poorly understood. Glycosylphosphatidylinositol (GPI) membrane anchoring of the prion protein (PrPC) directs it to specific regions of cell membranes called rafts. In order to test the importance of the raft environment on prion propagation, we developed a novel model for prion infection where cells expressing either GPI-anchored PrPC or transmembrane-anchored PrPC, which partitions it to a different location, were treated with infectious, misfolded forms of the prion protein, PrPres We show that only GPI-anchored PrPC was able to convert to PrPres and able to serially propagate. The results strongly suggest that GPI anchoring and the localization of PrPC to rafts are crucial to the ability of PrPC to propagate as a prion.


Asunto(s)
Expresión Génica , Microdominios de Membrana , Proteínas PrPC/genética , Proteínas PrPSc/genética , Proteínas PrPSc/metabolismo , Priones/metabolismo , Animales , Línea Celular , Técnicas de Inactivación de Genes , Proteínas de la Membrana , Ratones , Proteínas PrPSc/química , Enfermedades por Prión/genética , Enfermedades por Prión/metabolismo , Isoformas de Proteínas , Transporte de Proteínas
7.
PLoS Pathog ; 12(2): e1005416, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26840342

RESUMEN

Sporadic Creutzfeldt-Jakob disease (sCJD) is the most prevalent of the human prion diseases, which are fatal and transmissible neurodegenerative diseases caused by the infectious prion protein (PrP(Sc)). The origin of sCJD is unknown, although the initiating event is thought to be the stochastic misfolding of endogenous prion protein (PrP(C)) into infectious PrP(Sc). By contrast, human growth hormone-associated cases of iatrogenic CJD (iCJD) in the United Kingdom (UK) are associated with exposure to an exogenous source of PrP(Sc). In both forms of CJD, heterozygosity at residue 129 for methionine (M) or valine (V) in the prion protein gene may affect disease phenotype, onset and progression. However, the relative contribution of each PrP(C) allotype to PrP(Sc) in heterozygous cases of CJD is unknown. Using mass spectrometry, we determined that the relative abundance of PrP(Sc) with M or V at residue 129 in brain specimens from MV cases of sCJD was highly variable. This result is consistent with PrP(C) containing an M or V at residue 129 having a similar propensity to misfold into PrP(Sc) thus causing sCJD. By contrast, PrP(Sc) with V at residue 129 predominated in the majority of the UK human growth hormone associated iCJD cases, consistent with exposure to infectious PrP(Sc) containing V at residue 129. In both types of CJD, the PrP(Sc) allotype ratio had no correlation with CJD type, age at clinical onset, or disease duration. Therefore, factors other than PrP(Sc) allotype abundance must influence the clinical progression and phenotype of heterozygous cases of CJD.


Asunto(s)
Síndrome de Creutzfeldt-Jakob/genética , Proteínas PrPC/genética , Proteínas PrPSc/genética , Adulto , Anciano , Encéfalo/patología , Química Encefálica , Síndrome de Creutzfeldt-Jakob/metabolismo , Síndrome de Creutzfeldt-Jakob/patología , Femenino , Humanos , Enfermedad Iatrogénica , Masculino , Metionina/genética , Persona de Mediana Edad , Fenotipo , Proteínas PrPC/química , Proteínas PrPC/metabolismo , Proteínas PrPSc/química , Proteínas PrPSc/metabolismo , Proteínas Recombinantes , Valina/genética
8.
J Proteome Res ; 15(12): 4518-4531, 2016 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-27597180

RESUMEN

Aggregated and protease-resistant mammalian prion protein (PrPSc) is the primary protein component of infectious prions. Enriched PrPSc preparations are often used to study the mechanisms that underly prion disease. However, most enrichment procedures are relatively nonspecific and tend to yield significant amounts of non-PrPSc components including various proteins that could confound functional and structural studies. It is thus important to identify these proteins and assess their potential relevance to prion pathogenesis. Following proteinase K treatment and phosphotungstic acid precipitation of brain homogenate, we have used mass spectrometry to analyze the protein content of PrPSc isolated from prion-infected mice, multiple cases of sporadic Creutzfeldt-Jakob disease (sCJD), and human growth hormone associated cases of iatrogenic CJD (iCJD). Creatine kinase was the primary protein contaminant in all PrPSc samples, while many of the other proteins identified were also found in non-CJD controls, which suggests that they are not CJD specific. Interestingly, the Alzheimer's disease associated peptide amyloid ß 1-42 (Aß1-42) was identified in the majority of the sCJD cases as well as non-CJD age-matched controls, while apoliprotein E was found in greater abundance in the sCJD cases. By contrast, while some of the iCJD cases showed evidence of higher molecular weight Aß oligomers, monomeric Aß1-42 peptide was not detected by immunoblot, and only one case had significant levels of apolipoprotein E. Our data are consistent with the age-associated deposition of Aß1-42 in older sporadic CJD and non-CJD patients and suggest that both apolipoprotein E and Aß1-42 abundance can differ depending upon the type of CJD.


Asunto(s)
Péptidos beta-Amiloides/análisis , Apolipoproteínas E/análisis , Síndrome de Creutzfeldt-Jakob/clasificación , Fragmentos de Péptidos/análisis , Proteínas Priónicas/análisis , Adulto , Factores de Edad , Anciano , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Proteínas Priónicas/aislamiento & purificación
9.
Expert Rev Proteomics ; 12(2): 171-84, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25795148

RESUMEN

Prion diseases are a heterogeneous class of fatal neurodegenerative disorders associated with misfolding of host cellular prion protein (PrP(C)) into a pathological isoform, termed PrP(Sc). Prion diseases affect various mammals, including humans, and effective treatments are not available. Prion diseases are distinguished from other protein misfolding disorders - such as Alzheimer's or Parkinson's disease - in that they are infectious. Prion diseases occur sporadically without any known exposure to infected material, and hereditary cases resulting from rare mutations in the prion protein have also been documented. The mechanistic underpinnings of prion and other neurodegenerative disorders remain poorly understood. Various proteomics techniques have been instrumental in early PrP(Sc) detection, biomarker discovery, elucidation of PrP(Sc) structure and mapping of biochemical pathways affected by pathogenesis. Moving forward, proteomics approaches will likely become more integrated into the clinical and research settings for the rapid diagnosis and characterization of prion pathogenesis.


Asunto(s)
Enfermedades por Prión/metabolismo , Priones/química , Animales , Biomarcadores , Humanos , Enfermedades por Prión/diagnóstico , Priones/metabolismo , Proteómica/métodos
10.
Am J Pathol ; 184(12): 3299-307, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25280631

RESUMEN

Sporadic Creutzfeldt-Jakob disease is the most common of the human prion diseases, a group of rare, transmissible, and fatal neurologic diseases associated with the accumulation of an abnormal form (PrP(Sc)) of the host prion protein. In sporadic Creutzfeldt-Jakob disease, disease-associated PrP(Sc) is present not only as an aggregated, protease-resistant form but also as an aggregated protease-sensitive form (sPrP(Sc)). Although evidence suggests that sPrP(Sc) may play a role in prion pathogenesis, little is known about how it interacts with cells during prion infection. Here, we show that protease-sensitive abnormal PrP aggregates derived from patients with sporadic Creutzfeldt-Jakob disease are taken up and degraded by immortalized human astrocytes similarly to abnormal PrP aggregates that are resistant to proteases. Our data suggest that relative proteinase K resistance does not significantly influence the astrocyte's ability to degrade PrP(Sc). Furthermore, the cell does not appear to distinguish between sPrP(Sc) and protease-resistant PrP(Sc), suggesting that sPrP(Sc) could contribute to prion infection.


Asunto(s)
Astrocitos/metabolismo , Encéfalo/patología , Síndrome de Creutzfeldt-Jakob/metabolismo , Péptido Hidrolasas/química , Proteínas PrPC/metabolismo , Priones/metabolismo , Animales , Astrocitos/citología , Encéfalo/metabolismo , Endopeptidasa K/química , Epítopos/química , Fibroblastos/metabolismo , Humanos , Inmunoprecipitación , Ratones , Microscopía Fluorescente , Ácido Fosfotúngstico/química , Proteínas PrPSc/metabolismo , Enfermedades por Prión/metabolismo
11.
Proc Natl Acad Sci U S A ; 109(13): 5080-5, 2012 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-22416127

RESUMEN

The ability of prions to infect some species and not others is determined by the transmission barrier. This unexplained phenomenon has led to the belief that certain species were not susceptible to transmissible spongiform encephalopathies (TSEs) and therefore represented negligible risk to human health if consumed. Using the protein misfolding cyclic amplification (PMCA) technique, we were able to overcome the species barrier in rabbits, which have been classified as TSE resistant for four decades. Rabbit brain homogenate, either unseeded or seeded in vitro with disease-related prions obtained from different species, was subjected to serial rounds of PMCA. De novo rabbit prions produced in vitro from unseeded material were tested for infectivity in rabbits, with one of three intracerebrally challenged animals succumbing to disease at 766 d and displaying all of the characteristics of a TSE, thereby demonstrating that leporids are not resistant to prion infection. Material from the brain of the clinically affected rabbit containing abnormal prion protein resulted in a 100% attack rate after its inoculation in transgenic mice overexpressing rabbit PrP. Transmissibility to rabbits (>470 d) has been confirmed in 2 of 10 rabbits after intracerebral challenge. Despite rabbits no longer being able to be classified as resistant to TSEs, an outbreak of "mad rabbit disease" is unlikely.


Asunto(s)
Enfermedades por Prión/patología , Enfermedades por Prión/transmisión , Priones/metabolismo , Priones/patogenicidad , Animales , Encéfalo/metabolismo , Encéfalo/patología , Resistencia a la Enfermedad , Electroforesis en Gel de Poliacrilamida , Endopeptidasa K/metabolismo , Humanos , Inmunohistoquímica , Masculino , Ratones , Ratones Transgénicos , Enfermedades por Prión/metabolismo , Priones/química , Desnaturalización Proteica , Pliegue de Proteína , Conejos , Especificidad de la Especie
12.
J Proteome Res ; 13(11): 4620-34, 2014 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-25140793

RESUMEN

Prion diseases are a heterogeneous group of neurodegenerative disorders affecting various mammals including humans. Prion diseases are characterized by a misfolding of the host-encoded prion protein (PrP(C)) into a pathological isoform termed PrP(Sc). In wild-type mice, PrP(C) is attached to the plasma membrane by a glycosylphosphatidylinositol (GPI) anchor and PrP(Sc) typically accumulates in diffuse nonamyloid deposits with gray matter spongiosis. By contrast, when mice lacking the GPI anchor are infected with the same prion inoculum, PrP(Sc) accumulates in dense perivascular amyloid plaques with little or no gray matter spongiosis. In order to evaluate whether different host biochemical pathways were implicated in these two phenotypically distinct prion disease models, we utilized a proteomics approach. In both models, infected mice displayed evidence of a neuroinflammatory response and complement activation. Proteins involved in cell death and calcium homeostasis were also identified in both phenotypes. However, mitochondrial pathways of apoptosis were implicated only in the nonamyloid form, whereas metal binding and synaptic vesicle transport were more disrupted in the amyloid phenotype. Thus, following infection with a single prion strain, PrP(C) anchoring to the plasma membrane correlated not only with the type of PrP(Sc) deposition but also with unique biochemical pathways associated with pathogenesis.


Asunto(s)
Amiloide/metabolismo , Fenotipo , Enfermedades por Prión/metabolismo , Enfermedades por Prión/fisiopatología , Proteómica/métodos , Animales , Apoptosis/genética , Apoptosis/fisiología , Western Blotting , Calcio/metabolismo , Membrana Celular/metabolismo , Cromatografía Liquida , Homeostasis/genética , Homeostasis/fisiología , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Espectrometría de Masas en Tándem
13.
J Virol ; 87(21): 11552-61, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23966386

RESUMEN

Prion diseases are characterized by the conversion of the soluble protease-sensitive host-encoded prion protein (PrP(C)) into its aggregated, protease-resistant, and infectious isoform (PrP(Sc)). One of the earliest events occurring in cells following exposure to an exogenous source of prions is the cellular uptake of PrP(Sc). It is unclear how the biochemical properties of PrP(Sc) influence its uptake, although aggregate size is thought to be important. Here we show that for two different strains of mouse prions, one that infects cells (22L) and one that does not (87V), a fraction of PrP(Sc) associated with distinct sedimentation properties is preferentially taken up by the cells. However, while the fraction of PrP(Sc) and the kinetics of uptake were similar for both strains, PrP(Sc) derived from the 87V strain was disaggregated more rapidly than that derived from 22L. The increased rate of PrP(Sc) disaggregation did not correlate with either the conformational or aggregate stability of 87V PrP(Sc), both of which were greater than those of 22L PrP(Sc). Our data suggest that the kinetics of disaggregation of PrP(Sc) following cellular uptake is independent of PrP(Sc) stability but may be dependent upon some component of the PrP(Sc) aggregate other than PrP. Rapid disaggregation of 87V PrP(Sc) by the cell may contribute, at least in part, to the inability of 87V to infect cells in vitro.


Asunto(s)
Sustancias Macromoleculares/metabolismo , Proteínas PrPSc/metabolismo , Priones/metabolismo , Animales , Línea Celular , Sustancias Macromoleculares/química , Ratones , Proteínas PrPSc/química , Proteínas Priónicas , Priones/química , Estabilidad Proteica
14.
J Virol ; 87(17): 9501-10, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23785217

RESUMEN

In most forms of prion disease, infectivity is present primarily in the central nervous system or immune system organs such as spleen and lymph node. However, a transgenic mouse model of prion disease has demonstrated that prion infectivity can also be present as amyloid deposits in heart tissue. Deposition of infectious prions as amyloid in human heart tissue would be a significant public health concern. Although abnormal disease-associated prion protein (PrP(Sc)) has not been detected in heart tissue from several amyloid heart disease patients, it has been observed in the heart tissue of a patient with sporadic Creutzfeldt-Jakob Disease (sCJD), the most common form of human prion disease. In order to determine whether prion infectivity can be found in heart tissue, we have inoculated formaldehyde fixed brain and heart tissue from two sCJD patients, as well as prion protein positive fixed heart tissue from two amyloid heart disease patients, into transgenic mice overexpressing the human prion protein. Although the sCJD brain samples led to clinical or subclinical prion infection and deposition of PrP(Sc) in the brain, none of the inoculated heart samples resulted in disease or the accumulation of PrP(Sc). Thus, our results suggest that prion infectivity is not likely present in cardiac tissue from sCJD or amyloid heart disease patients.


Asunto(s)
Amiloidosis/metabolismo , Amiloidosis/patología , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Síndrome de Creutzfeldt-Jakob/metabolismo , Síndrome de Creutzfeldt-Jakob/patología , Miocardio/metabolismo , Miocardio/patología , Proteínas PrPSc/metabolismo , Proteínas PrPSc/patogenicidad , Animales , Encéfalo/metabolismo , Encéfalo/patología , Síndrome de Creutzfeldt-Jakob/transmisión , Cricetinae , Modelos Animales de Enfermedad , Humanos , Inmunohistoquímica , Ratones , Ratones Transgénicos
15.
PLoS One ; 19(2): e0298095, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38394123

RESUMEN

The PINK1/Parkin pathway of mitophagy has been implicated in the pathogenesis of Parkinson's disease. In prion diseases, a transmissible neurodegenerative disease caused by the misfolded and infectious prion protein (PrPSc), expression of both PINK1 and Parkin are elevated, suggesting that PINK1/Parkin mediated mitophagy may also play a role in prion pathogenesis. Using mice in which expression of either PINK1 (PINK1KO) or Parkin (ParkinKO) has been ablated, we analyzed the potential role of PINK1 and Parkin in prion pathogenesis. Prion infected PINK1KO and ParkinKO mice succumbed to disease more rapidly (153 and 150 days, respectively) than wild-type control C57Bl/6 mice (161 days). Faster incubation times in PINK1KO and ParkinKO mice did not correlate with altered prion pathology in the brain, altered expression of proteins associated with mitochondrial dynamics, or prion-related changes in mitochondrial respiration. However, the expression level of mitochondrial respiration Complex I, a major site for the formation of reactive oxygen species (ROS), was higher in prion infected PINK1KO and ParkinKO mice when compared to prion infected control mice. Our results demonstrate a protective role for PINK1/Parkin mitophagy during prion disease, likely by helping to minimize ROS formation via Complex I, leading to slower prion disease progression.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedades por Prión , Priones , Ratones , Animales , Mitofagia , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Enfermedades por Prión/genética
17.
J Biochem ; 174(2): 165-181, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37099550

RESUMEN

Accumulation of insoluble aggregates of infectious, partially protease-resistant prion protein (PrPD) generated via the misfolding of protease sensitive prion protein (PrPC) into the same infectious conformer, is a hallmark of prion diseases. Aggregated PrPD is taken up and degraded by cells, a process likely involving changes in aggregate structure that can be monitored by accessibility of the N-terminus of full-length PrPD to cellular proteases. We therefore tracked the protease sensitivity of full-length PrPD before and after cellular uptake for two murine prion strains, 22L and 87V. For both strains, PrPD aggregates were less stable following cellular uptake with increased accessibility of the N-terminus to cellular proteases across most aggregate sizes. However, a limited size range of aggregates was able to better protect the N-termini of full-length PrPD, with the N-terminus of 22L-derived PrPD more protected than that of 87V. Interestingly, changes in aggregate structure were associated with minimal changes to the protease-resistant core of PrPD. Our data show that cells destabilize the aggregate quaternary structure protecting PrPD from proteases in a strain-dependent manner, with structural changes exposing protease sensitive PrPD having little effect on the protease-resistant core, and thus conformation, of aggregated PrPD.


Asunto(s)
Enfermedades por Prión , Priones , Animales , Ratones , Endopeptidasas , Péptido Hidrolasas/química , Enfermedades por Prión/metabolismo , Proteínas Priónicas , Priones/química , Priones/metabolismo , Proteínas PrPSc/química , Proteínas PrPSc/metabolismo
18.
PLoS One ; 18(8): e0290325, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37616303

RESUMEN

Prion diseases are transmissible, fatal neurologic diseases that include Creutzfeldt-Jakob Disease (CJD) in humans, chronic wasting disease (CWD) in cervids, bovine spongiform encephalopathy (BSE) in cattle and scrapie in sheep. Prions are extremely difficult to inactivate and established methods to reduce prion infectivity are often dangerous, caustic, expensive, or impractical. Identifying viable and safe methods for treating prion contaminated materials is important for hospitals, research facilities, biologists, hunters, and meat-processors. For three decades, some prion researchers have used a phenolic product called Environ LpH (eLpH) to inactivate prions. ELpH has been discontinued, but a similar product, Wex-cide 128, containing the similar phenolic chemicals as eLpH is now available. In the current study, we directly compared the anti-prion efficacy of eLpH and Wex-cide 128 against prions from four different species (hamster 263K, cervid CWD, mouse 22L and human CJD). Decontamination was performed on either prion infected brain homogenates or prion contaminated steel wires and mouse bioassay was used to quantify the remaining prion infectivity. Our data show that both eLpH and Wex-cide 128 removed 4.0-5.5 logs of prion infectivity from 22L, CWD and 263K prion homogenates, but only about 1.25-1.50 logs of prion infectivity from human sporadic CJD. Wex-cide 128 is a viable substitute for inactivation of most prions from most species, but the resistance of CJD to phenolic inactivation is a concern and emphasizes the fact that inactivation methods should be confirmed for each target prion strain.


Asunto(s)
Síndrome de Creutzfeldt-Jakob , Ciervos , Desinfectantes , Priones , Scrapie , Esguinces y Distensiones , Cricetinae , Humanos , Animales , Bovinos , Ratones , Ovinos , Encéfalo , Desinfectantes/farmacología , Fenoles
19.
PLoS One ; 17(5): e0267720, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35507602

RESUMEN

Prion diseases are a group of fatal, transmissible neurodegenerative diseases of mammals. In the brain, axonal loss and neuronal death are prominent in prion infection, but the mechanisms remain poorly understood. Sterile alpha and heat/Armadillo motif 1 (SARM1) is a protein expressed in neurons of the brain that plays a critical role in axonal degeneration. Following damage to axons, it acquires an NADase activity that helps to regulate mitochondrial health by breaking down NAD+, a molecule critical for mitochondrial respiration. SARM1 has been proposed to have a protective effect in prion disease, and we hypothesized that it its role in regulating mitochondrial energetics may be involved. We therefore analyzed mitochondrial respiration in SARM1 knockout mice (SARM1KO) and wild-type mice inoculated either with prions or normal brain homogenate. Pathologically, disease was similar in both strains of mice, suggesting that SARM1 mediated axonal degradation is not the sole mechanism of axonal loss during prion disease. However, mitochondrial respiration was significantly increased and disease incubation time accelerated in prion infected SARM1KO mice when compared to wild-type mice. Increased levels of mitochondrial complexes II and IV and decreased levels of NRF2, a potent regulator of reactive oxygen species, were also apparent in the brains of SARM1KO mice when compared to wild-type mice. Our data suggest that SARM1 slows prion disease progression, likely by regulating mitochondrial respiration, which may help to mitigate oxidative stress via NRF2.


Asunto(s)
Proteínas del Dominio Armadillo , Priones , Animales , Proteínas del Dominio Armadillo/genética , Proteínas del Dominio Armadillo/metabolismo , Axones/metabolismo , Proteínas del Citoesqueleto/metabolismo , Mamíferos/metabolismo , Ratones , Ratones Noqueados , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Priones/metabolismo , Respiración
20.
Proteomics ; 11(19): 3853-65, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21805638

RESUMEN

Prion diseases are neurodegenerative disorders associated with the accumulation of an abnormal isoform of the mammalian prion protein (PrP). Fourier transform infrared spectroscopy (FTIR) has previously been used to show that the conformation of aggregated, infectious PrP (PrP(Sc) ) varies between prion strains and these unique conformations may determine strain-specific disease phenotypes. However, the relative amounts of α-helix, ß-sheet and other secondary structures have not always been consistent between studies, suggesting that other proteins might be confounding the analysis of PrP(Sc) secondary structure. We have used FTIR and LC-MS/MS to analyze enriched PrP(Sc) from mouse and hamster prion strains both before and after the removal of protein contaminants that commonly co-purify with PrP(Sc) . Our data show that non-PrP proteins do contribute to absorbances that have been associated with α-helical, loop, turn and ß-sheet structures attributed to PrP(Sc) . The major contaminant, the α-helical protein ferritin, absorbs strongly at 1652 cm(-1) in the FTIR spectrum associated with PrP(Sc) . However, even the removal of more than 99% of the ferritin from PrP(Sc) did not completely abolish absorbance at 1652 cm(-1) . Our results show that contaminating proteins alter the FTIR spectrum attributed to PrP(Sc) and suggest that the α-helical, loop/turn and ß-sheet secondary structure that remains following their removal are derived from PrP(Sc) itself.


Asunto(s)
Proteínas PrPSc/aislamiento & purificación , Enfermedades por Prión/diagnóstico , Proteínas/aislamiento & purificación , Proteómica/métodos , Animales , Cromatografía Líquida de Alta Presión/métodos , Cricetinae , Ferritinas/aislamiento & purificación , Ferritinas/metabolismo , Humanos , Ratones , Proteínas PrPSc/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Proteínas/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Espectrometría de Masas en Tándem/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA