Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nicotine Tob Res ; 23(3): 584-591, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-32776101

RESUMEN

INTRODUCTION: Tobacco heating products (THPs) generate lower machine yields of toxicants compared to those found in conventional cigarette smoke. During use, these products are likely to expose users to lower levels of particulate matter and harmful and potentially harmful compounds compared with smoking cigarettes. AIMS AND METHODS: This randomized, controlled study is investigating whether biomarkers of exposure (BoE) to smoke toxicants are reduced when smokers switch from smoking cigarettes to using the glo THP in a naturalistic, ambulatory setting. Control groups include smokers who are abstaining from cigarette smoking and never-smokers. At a baseline study visit, 24-hour urine samples and spot blood samples were taken for BoE analysis, and exhaled carbon monoxide was also measured. N-(2-cyanoethyl) valine (CEVal) was used as a marker of compliance in subjects asked to refrain from combustible cigarette smoking. Subjects are being followed up at periodic intervals for 360 days; this article presents data following a planned interim analysis at day 90. RESULTS: In continuing smokers, BoE remained stable between baseline (day 1) and day 90. In both per-protocol and CEVal-compliant analysis populations, reductions in BoE were observed in subjects switching to using glo or undergoing smoking cessation. These reductions were statistically significant for a number of BoE when switching to glo was compared with continued smoking. Furthermore, in both populations, reductions observed in subjects switching to using glo were comparable to those seen with smoking cessation and were also to levels similar to those seen in never-smokers. CONCLUSION: glo is a reduced-exposure tobacco product. IMPLICATIONS: This clinical study builds on a previous 5-day confinement study and demonstrates that when smokers switched from smoking combustible cigarettes to using the glo THP in a naturalistic, ambulatory setting, their exposure to tobacco smoke toxicants was significantly decreased. For most BoE examined, this was to the same extent as that seen when a control group of smokers ceased cigarette smoking, or even to levels seen in never-smoker controls. This indicates that glo is a reduced-exposure product with the potential to be a reduced-risk tobacco product, when used by smokers whose cigarette consumption is displaced completely. CLINICAL TRIAL REGISTRATION: ISRCTN81075760.


Asunto(s)
Biomarcadores/análisis , Fumar Cigarrillos/sangre , Fumar Cigarrillos/orina , Calefacción/efectos adversos , Fumadores/psicología , Productos de Tabaco/análisis , Adulto , Fumar Cigarrillos/epidemiología , Fumar Cigarrillos/psicología , Espiración , Femenino , Sustancias Peligrosas/efectos adversos , Humanos , Masculino , Persona de Mediana Edad , Productos de Tabaco/efectos adversos , Reino Unido/epidemiología , Adulto Joven
2.
Nicotine Tob Res ; 21(9): 1220-1227, 2019 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-29912406

RESUMEN

BACKGROUND: Smoking is a leading cause of numerous human disorders including pulmonary disease, cardiovascular disease, and cancer. Disease development is primarily caused by exposure to cigarette smoke constituents, many of which are known toxicants. Switching smokers to modified risk tobacco products (MRTPs) has been suggested as a potential means to reduce the risks of tobacco use, by reducing such exposure. METHODS: This randomized, controlled study investigated whether biomarkers of toxicant exposure (BoE) were reduced when smokers switched from smoking combustible cigarettes to using a novel (glo™/THP1.0) or in-market comparator (iQOS/THS) tobacco heating product (THP). One hundred eighty Japanese smokers smoked combustible cigarettes during a 2-day baseline period, followed by randomization to either continue smoking cigarettes, switch to using mentholated or non-mentholated variants of glo™, switch to using a non-mentholated variant of iQOS, or quit nicotine and tobacco product use completely for 5 days. Baseline and post-randomization 24-h urine samples were collected for BoE analysis. Carbon monoxide was measured daily in exhaled breath (eCO). RESULTS: On day 5 after switching, urinary BoE (excluding for nicotine) and eCO levels were significantly (p < .05) reduced by medians between 20.9% and 92.1% compared with baseline in all groups either using glo™ or iQOS or quitting tobacco use. Between-group comparisons revealed that the reductions in the glo™ groups were similar (p > .05) to quitting in many cases. CONCLUSIONS: glo™ or iQOS use for 5 days reduced exposure to smoke toxicants in a manner comparable to quitting tobacco use. THPs are reduced exposure tobacco products with the potential to be MRTPs. IMPLICATIONS: This clinical study demonstrates that when smokers switched from smoking combustible cigarettes to using tobacco heating products their exposure to smoke toxicants was significantly decreased. In many cases, this was to the same extent as that seen when they quit smoking completely. This may indicate that these products have the potential to be reduced exposure and/or reduced risk tobacco products when used by smokers whose cigarette consumption is displaced completely. CLINICAL TRIAL REGISTRATIONS: ISRCTN14301360 and UMIN000024988.


Asunto(s)
Fumar Cigarrillos/epidemiología , Fumar Cigarrillos/orina , Sistemas Electrónicos de Liberación de Nicotina , Nicotina/orina , Productos de Tabaco/análisis , Adulto , Biomarcadores/orina , Femenino , Calefacción/efectos adversos , Humanos , Japón/epidemiología , Masculino , Persona de Mediana Edad , Cese del Hábito de Fumar , Productos de Tabaco/efectos adversos
3.
Regul Toxicol Pharmacol ; 93: 4-13, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29080851

RESUMEN

A novel tobacco heating product, THP1.0, that heats tobacco below 245 °C is described. It was designed to eliminate tobacco combustion, while heating tobacco to release nicotine, tobacco volatiles and glycerol to form its aerosol. The stewardship assessment approach behind the THP 1.0 design was based on established toxicological principles. Thermophysical studies were conducted to examine the extent of tobacco thermal conversion during operation. Thermogravimetric analysis of the tobacco material revealed the major thermal behaviour in air and nitrogen up to 900 °C. This, combined with the heating temperature profiling of the heater and tobacco rod, verified that the tobacco was not subject to combustion. The levels of tobacco combustion markers (CO, CO2, NO and NOx) in the aerosol of THP1.0 were significantly lower than the levels if there were any significant pyrolysis or combustion. Quantification of other tobacco thermal decomposition and evaporative transfer markers showed that these levels were, on average, reduced by more than 90% in THP1.0 aerosol as compared with cigarette smoke. The physical integrity of the tobacco consumable rod showed no ashing. Taken together, these data establish that the aerosol generated by THP1.0 is produced mainly by evaporation and distillation, and not by combustion or pyrolysis.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina/métodos , Diseño de Equipo/métodos , Calefacción/métodos , Productos de Tabaco/análisis , Sistemas Electrónicos de Liberación de Nicotina/instrumentación , Diseño de Equipo/instrumentación , Distribución Aleatoria
4.
BMC Public Health ; 17(1): 673, 2017 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-28830420

RESUMEN

BACKGROUND: Smoking is a leading cause of numerous human disorders including lung cancer, chronic obstructive pulmonary disease, and atherosclerotic cardiovascular disease. The development of modified risk tobacco products (MRTPs) has been suggested as a possible way to reduce the risks of tobacco smoking by reducing exposure to cigarette smoke toxicants. This study is designed to investigate whether biomarkers of such exposure are reduced when smokers switch from smoking commercial cigarettes to using either a novel or a commercially-available tobacco heating product (THP). DESIGN AND METHODS: This study will assess biomarkers of exposure in current smokers who either remain smoking, switch to THP use, or quit all tobacco use completely, for 5 days. The study is an in-clinic (confinement) two-centre, randomised controlled clinical study with a forced-switching design. Subjects of either gender will be aged 23-55 years (minimum legal smoking age plus 3 years), of Japanese origin and with a verified smoking status (assessed by exhaled breath carbon monoxide and urinary cotinine levels). Subjects will have a usual brand cigarette within the International Organisation for Standardisation (ISO) tar band of 6-8 mg and will be judged to be healthy by medical history, physical examination, vital signs, electrocardiography (ECG), clinical biochemistry and lung function tests. The primary objective of this study is to assess changes within groups in selected biomarkers of exposure (BoE) and of biological effect (BoBE) after a forced switch from a commercial control cigarette to either a menthol or a non-menthol THP. Secondary objectives are to assess between-group differences, to determine nicotine pharmacokinetics for cigarettes and THPs, to assess subject's satisfaction with the study products, and to monitor additional endpoints related to safety and product use. DISCUSSION: Data from this study will advance our scientific understanding of the changes in exposure to cigarette smoke toxicants in smokers who switch to using a THP. TRIAL REGISTRATIONS: UMIN000024988 (25th November 2016); ISRCTN14301360 (14th December 2016).


Asunto(s)
Biomarcadores/análisis , Fumar , Productos de Tabaco/estadística & datos numéricos , Adulto , Biomarcadores/orina , Pruebas Respiratorias , Femenino , Calefacción , Humanos , Japón , Masculino , Persona de Mediana Edad , Fumar/orina , Adulto Joven
5.
Regul Toxicol Pharmacol ; 86: 332-348, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28284711

RESUMEN

The WHO Tobacco Product Regulation Study Group (TobReg) has proposed three regulatory models for cigarettes, each creating mandatory limits for emissions of nine smoke toxicants. One approach proposes country-specific limits, using median or 1.25× median toxicant/nicotine emission ratios. A second model provides fixed toxicant-ratio limits. The third model limits were three times the lowest toxicant emission on a market. Currently, the practical implications of these models are largely unknown. An impact assessment was conducted using cigarette data from 79 countries to identify four diverse test markets. We sampled all products from each market but limited product availability led to incomplete (80-97%) sourcing. Analysis showed that the country-specific model led to diverse (up to threefold) toxicant limits across the four markets. 70%-80% of products were non-compliant, rising to 100% in some countries with the second and the third models. With each regulatory model the main drivers of non-compliance were the tobacco-specific nitrosamines, the simultaneous application of limits for nine poorly correlated smoke toxicants, and analytical variability. Use of nicotine ratios led to compliance of some high toxicant emission products due to high nicotine emissions. Our findings suggest that these proposals would have greater impact on global markets than TobReg's stated aims.


Asunto(s)
Nicotiana/química , Humo/análisis , Productos de Tabaco/legislación & jurisprudencia , Internacionalidad , Nicotina/análisis , Nitrosaminas/análisis , Nicotiana/toxicidad , Productos de Tabaco/toxicidad , Organización Mundial de la Salud
6.
Regul Toxicol Pharmacol ; 72(3): 458-72, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26021184

RESUMEN

Approximately 100 toxicants have been identified in cigarette smoke, to which exposure has been linked to a range of serious diseases in smokers. Smoking machines have been used to quantify toxicant emissions from cigarettes for regulatory reporting. The World Health Organization Study Group on Tobacco Product Regulation has proposed a regulatory scenario to identify median values for toxicants found in commercially available products, which could be used to set mandated limits on smoke emissions. We present an alternative approach, which used quantile regression to estimate reference percentiles to help contextualise the toxicant yields of commercially available products with respect to a reference analyte, such as tar or nicotine. To illustrate this approach we examined four toxicants (acetone, N'-nitrosoanatabine, phenol and pyridine) with respect to tar, and explored International Organization for Standardization (ISO) and Health Canada Intense (HCI) regimes. We compared this approach with other methods for assessing toxicants in cigarette smoke, such as ratios to nicotine or tar, and linear regression. We concluded that the quantile regression approach effectively represented data distributions across toxicants for both ISO and HCI regimes. This method provides robust, transparent and intuitive percentile estimates in relation to any desired reference value within the data space.


Asunto(s)
Acetona/análisis , Nitrosaminas/análisis , Fenol/análisis , Piridinas/análisis , Humo/análisis , Contaminación por Humo de Tabaco/análisis , Análisis de Regresión , Nicotiana , Productos de Tabaco
7.
Regul Toxicol Pharmacol ; 72(2): 273-91, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25957570

RESUMEN

BACKGROUND: Development of cigarettes that reduce exposure to harmful smoke constituents is a suggested tobacco harm reduction strategy, but robust methods for measurement of change are required. We investigated whether changes in biomarkers of exposure (BoE), effective dose (BoED) and biological effect (BoBE) could be detected after switching from conventional cigarettes to a reduced-toxicant-prototype cigarette (RTP). METHODS: Regular smokers of 6-8mg ISO tar yield cigarettes were recruited in Hamburg, Germany, and supplied with a conventional 7mg ISO tar yield cigarette for 2weeks then switched to the same cigarette with a different tipping paper (control) or the RTP for 6months. Subjects smoked mostly at home and attended five residential clinic visits where urine and blood samples were collected for analysis. Primary endpoints were changes in specific biomarker levels compared with non-smoker background levels. Changes in daily cigarette consumption were also investigated. RESULTS: BoE levels in controls generally increased over the study period, whereas most BoE and all BoED significantly declined in RTP smokers. Most BoBE data were similar across groups and/or too variable within individuals to detect changes. Increased daily cigarette consumption was affected by supply of free cigarettes, perceived shorter smoking time per cigarette than usual brands, and perceived reduced harm. CONCLUSIONS: Despite increased cigarette consumption, reductions in BoE and BoED were detectable.


Asunto(s)
Sustancias Peligrosas/toxicidad , Fumar/sangre , Fumar/orina , Productos de Tabaco/toxicidad , Adulto , Biomarcadores/sangre , Biomarcadores/orina , Exposición a Riesgos Ambientales/análisis , Femenino , Humanos , Masculino , Persona de Mediana Edad , Encuestas y Cuestionarios , Adulto Joven
8.
Clin Chem Lab Med ; 52(3): 399-411, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24114919

RESUMEN

BACKGROUND: In a previous clinical study, levels of biomarkers of exposure (BoEs) for specific toxicants were significantly reduced in smokers who switched from conventional cigarettes to reduced toxicant prototype (RTP) cigarettes. Very little is known about the biological variability of tobacco smoke BoEs within individuals and sub-groups, and the descriptive group-comparison statistics might not be sufficient to understand such changes. Therefore, we assessed how different statistical methods could be used to interpret changes in urine BoE levels at the individual level. METHODS: We used non-parametric statistical reference limits, the empirical rule and reference change values (RCVs) to assess changes in levels of BoEs related to four toxicants in cigarettes smoke. Current smokers [of 6 mg and 1 mg International Organization for Standardization (ISO) tar yields] were allocated to switching to RTP groups or non-switching control groups within their respective tar bands. There were two 6 mg tar study groups, with a non-switching group (CC6, n=46) and a group switching to an RTP containing tobacco-substitute sheet and modified filter (TSS6, n=49); and three 1 mg tar smoker groups, with one non-switching (CC1, n=42), a group switching to an RTP containing tobacco-substitute sheet and modified filter (TSS1, n=44) and one switching to an RTP containing an enzyme-treated tobacco and modified filter (BT1, n=47). RESULTS: Assessment of the direction of change showed that up to the 100% of subjects experienced a decrease in levels of some BoEs. Between 49% and 64% of subjects in the switching groups were classified as having decreased levels of 3-hydroxy-1-methylpropylmercapturic acid (HMPMA) by the non-parametric criterion, whereas only 2%-6% had reduced levels of N-nitrosoanatabine (NAT). Of non-switchers, in 7%-14% of those smoking 1 mg ISO tar yield cigarettes increases were classified across all BoEs. RCVs highlighted patterns with more detail, showing that most changes occurred within 14 days of switching. Among smokers who switched to 6 mg RTPs, 40%, 44%, 6% and 15%, respectively, were classified as experiencing significant decreasing levels of HPMA, 3-hydroxypropylmercapturic acid, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol and NAT, whereas in the two 1 mg switching groups 46%, 22%, 11% and 52% and 43%, 27%, 2% and 16% had decreased levels of the same biomarkers. Up to five subjects in the 6 mg non-switching group were classified as having increased levels of all BoEs. CONCLUSIONS: Although we believe that is not possible to determine whether the observed changes in BoEs reflect biological relevance, the use of reference values enables assessment of changes in BoEs at the individual level. Estimates of the BoE variability between subjects might aid study design and setting minimum targets for smoke toxicant yields for future development of RTPs.


Asunto(s)
Exposición a Riesgos Ambientales/normas , Productos de Tabaco/análisis , Adulto , Biomarcadores/análisis , Estudios de Factibilidad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Valores de Referencia , Estadísticas no Paramétricas , Adulto Joven
9.
Regul Toxicol Pharmacol ; 66(1): 147-62, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23537587

RESUMEN

UNLABELLED: Reduced toxicant prototype (RTP) cigarettes with substantially reduced levels of tobacco smoke toxicants have been developed. Evaluation of these prototype cigarettes included measurement of biomarkers of exposure (BoE) to toxicants in smokers switched from conventional cigarettes to the RTPs. A 6-week single-blinded randomised controlled study with occasional clinical confinement was conducted ( TRIAL REGISTRATION: ISRCTN7215735). All smoking subjects smoked a conventional cigarette for 2-weeks. Control groups continued to smoke the conventional cigarette while test groups switched to one of three RTP designs. Clinical confinement and additional assessments were performed for all smoking groups after 2 and 4-weeks. A non-smoker group provided background levels of BoE. On average, smokers switched to RTPs with reduced machine yields of toxicants had reduced levels of corresponding BoEs. For vapour phase toxicants such as acrolein and 1,3-butadiene reductions of ⩾70% were observed both in smoke chemistry and BoEs. Reductions in particulate phase toxicants such as tobacco-specific nitrosamines, aromatic amines and polyaromatic hydrocarbons depended upon the technologies used, but were in some cases ⩾80% although some increases in other particulate phase toxicants were observed. However, reductions in BoEs demonstrate that it is possible to produce prototype cigarettes that reduce exposure to toxicants in short-term use.


Asunto(s)
Humo/análisis , Fumar/metabolismo , Productos de Tabaco/análisis , Adulto , Biomarcadores/análisis , Femenino , Humanos , Masculino , Persona de Mediana Edad , Noxas/análisis , Método Simple Ciego , Factores de Tiempo , Productos de Tabaco/toxicidad , Adulto Joven
10.
Intern Emerg Med ; 17(7): 2017-2030, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36036342

RESUMEN

The aim of this study was to investigate whether biomarkers of exposure (BoE) and potential harm (BoPH) are modified when smokers either continue to smoke or switch from smoking cigarettes to exclusive use of a tobacco heating product (THP) in an ambulatory setting over the period of a year, and to compare any changes with smokers who quit tobacco use completely and with never smokers' biomarker levels. Participants in this year-long ambulatory study were healthy smokers with a self-reported low intent to quit assigned either to continue smoking or switch to a THP; a group of smokers with a self-reported high intent to quit who abstained from tobacco use; and a group of never smokers. Various BoE and BoPH related to oxidative stress, cardiovascular and respiratory diseases and cancer were assessed at baseline and up to 360 days. Substantial and sustained reductions in BoE levels were found at 360 days for both participants who switched from smoking to THP use and participants who quit smoking, in many cases the reductions being of a similar order for both groups. The never smoker group typically had lower levels of the measured BoEs than either of these groups, and much lower levels than participants who continued to smoke. Several BoPHs were found to change in a favourable direction (towards never smoker levels) over the year study for participants who completely switched to THP or quit, while BoPHs such as soluble intercellular adhesion molecule-1 were found to change in an unfavourable direction (away from never smoker levels) in participants who continued to smoke. Our findings, alongside chemical and toxicological studies undertaken on the THP used in this study, lead to the conclusion that smokers who would have otherwise continued to smoke and instead switch entirely to the use of this THP, will reduce their exposure to tobacco smoke toxicants and as a consequence are reasonably likely to reduce disease risks compared to those continuing to smoke.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Cese del Hábito de Fumar , Productos de Tabaco , Contaminación por Humo de Tabaco , Biomarcadores , Calefacción , Humanos , Molécula 1 de Adhesión Intercelular , Fumadores , Fumar/efectos adversos , Nicotiana , Productos de Tabaco/efectos adversos
11.
Sci Rep ; 12(1): 14701, 2022 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-36038580

RESUMEN

Tobacco heating products (THPs) have reduced emissions of toxicants compared with cigarette smoke, and as they expose user to lower levels than smoking, have for a role to play in tobacco harm reduction. One key concern of Public Health is that new tobacco and nicotine products should not be more addictive than cigarettes. To assess their abuse liability, we determined nicotine pharmacokinetics and subjective effects of two THPs compared with conventional cigarettes and a nicotine replacement therapy (Nicotine inhaler). In a randomised, controlled, open-label, crossover study healthy adult smokers used a different study product in a 5 min ad libitum use session in each of four study periods. Product liking, overall intent to use again, urge for product and urge to smoke questionnaires were utilised to assess subjective effects. Nicotine uptake was greater for the cigarette (Cmax = 22.7 ng/mL) than for either THP (8.6 and 10.5 ng/mL) and the NRT (2.3 ng/mL). Median Tmax was significantly longer for the NRT (15.03 min) than for the tobacco products (4.05-6.03 min). Product liking and overall intent to use again was highest for the cigarette, and higher for the THPs than the NRT. Urge to smoke was reduced more by the cigarette than by the other three products. Urge to use the THPs was greater than the NRT. These findings suggest that the abuse liability of the THPs lies between that of subjects usual brand cigarettes and the NRT.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Cese del Hábito de Fumar , Productos de Tabaco , Adulto , Estudios Cruzados , Calefacción , Humanos , Nicotina/efectos adversos , Nicotina/farmacocinética , Nicotiana , Productos de Tabaco/efectos adversos , Dispositivos para Dejar de Fumar Tabaco/efectos adversos
12.
Intern Emerg Med ; 16(8): 2201-2212, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34196886

RESUMEN

The aim of this study was to investigate whether biomarkers of exposure (BoE) and potential harm (BoPH) are modified when smokers switch from smoking cigarettes to exclusive use of a tobacco heating product (THP) in an ambulatory setting. Participants in this randomised, controlled study were healthy volunteer smokers assigned either to continue smoking or switch to a THP, and a control group of smokers who abstained from cigarette smoking. Various BoE and BoPH related to oxidative stress, cardiovascular and respiratory diseases, and cancer were assessed at baseline and up to 180 days. In continuing smokers, BoE and BoPH remained stable between baseline and day 180, while THP users' levels of most BoE reduced significantly, becoming similar to those in controls abstaining from cigarette smoking. Also at 180 days, significant changes in numerous BoPH, including total 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol, 8-epi-prostaglandin F2α type III, fractional concentration of exhaled nitric oxide and white blood cell count, were directionally consistent with lessened health impact. Our findings support the notion that the deleterious health impacts of cigarette smoking may be reduced in smokers who completely switch to using THPs.


Asunto(s)
Biomarcadores/análisis , Calefacción/efectos adversos , Nicotiana/metabolismo , Adulto , Biomarcadores/sangre , Sistemas Electrónicos de Liberación de Nicotina , Femenino , Calefacción/métodos , Humanos , Exposición por Inhalación/efectos adversos , Masculino , Tamizaje Masivo/métodos , Tamizaje Masivo/estadística & datos numéricos , Persona de Mediana Edad , Nicotiana/efectos adversos , Reino Unido
13.
Toxicol Rep ; 8: 994-1001, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34026564

RESUMEN

BACKGROUND: Cigarette smoking is associated with a number of diseases, such as cancer and cardiovascular diseases. Recently, there has been an increase in the use of electronic cigarettes (ECs) and tobacco-heating products (THPs) as an alternative to cigarettes, which may reduce the health burden associated with smoking. However, an exposure continuum when smokers switch to ECs or THPs compared to complete smoking cessation is not well established. METHODS: 148 healthy smokers were randomized to either continue smoking cigarettes, switch to using the glo THP or a prototype EC, or completely quit any nicotine or tobacco product use for 5 days, after a 2-day baseline period. During this study breath and 24-h urine samples were collected for Biomarker of Exposure (BoE) analysis. RESULTS: After a 5-day switching period BoE levels showed a substantial significant decrease in levels from baseline in the groups using the glo THP, the prototype EC, and having quit all nicotine and tobacco use. On an exposure continuum, smokers who completely quit nicotine had the lowest levels of assessed BoEs, followed by those who switched to the EC and then those who switched to glo THP use. Participants who continued to smoke had the highest levels of BoEs. CONCLUSIONS: THP or EC use over a 5-day period resulted in significant reductions in exposure to smoke toxicants, in some cases to levels similar to those for nicotine cessation. These results show that on an exposure continuum, nicotine cessation gives the greatest reduction in exposure to tobacco smoke toxicants, closely followed by the EC and the glo THP. These significant reductions in exposure to toxicants suggest that the glo THP and EC have the potential to be Reduced Risk Products. STUDY REGISTRATION: ISRCTN80651909.

14.
Sci Rep ; 10(1): 19980, 2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33235307

RESUMEN

Smokers who switch completely to e-cigarettes may reduce their relative risk of tobacco-related disease. Effective nicotine delivery from e-cigarettes is important in consumer acceptance. We assessed whether protonated nicotine and e-cigarette devices delivering greater aerosol mass increase nicotine delivery and product liking. A randomised controlled non-blinded eight-arm crossover study was used to assess plasma nicotine pharmacokinetics and product liking for two e-cigarettes (Vype ePen3 and Vype ePen) with various nicotine e-liquid formulations and a conventional cigarette among 24 healthy dual-users of cigarettes and e-cigarettes. Product use and puff count were also assessed. Results show that nicotine bioavailability was greater for Vype ePen3 with greater aerosol mass delivery than for Vype ePen (Cmax, p = 0.0073; AUC0-120 min, p = 0.0102). Protonated nicotine (18 mg/mL, medium protonation) e-liquid yielded higher nicotine bioavailability than unprotonated nicotine (18 mg/mL) e-liquid (Cmax, p = 0.0001; AUC0-120 min, p = 0.0026). There was no significant difference in Tmax between e-liquids. Nicotine bioavailability did not differ between nicotine benzoate formulation (30 mg/mL nicotine, high protonation) and combustible cigarettes (Cmax, p = 0.79; AUC0-120 min, p = 0.13). Vype ePen3 with protonated nicotine delivers nicotine more efficiently with the potential to increase product liking relative to earlier devices using unprotonated e-liquid.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina/estadística & datos numéricos , Nicotina/farmacocinética , Adulto , Disponibilidad Biológica , Estudios Cruzados , Femenino , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Nicotina/sangre , Fumadores , Fumar/sangre , Nicotiana , Productos de Tabaco
16.
Am J Health Behav ; 41(1): 16-32, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27935787

RESUMEN

OBJECTIVES: E-cigarettes could potentially play a major role in tobacco harm reduction by delivering nicotine in a vapor containing significantly fewer toxicants than cigarette smoke and may aid smoking behavior changes such as reduction or cessation. METHODS: We examined blood nicotine levels in smokers who were non-accustomed to e-cigarette use (Study 1) and accustomed e-cigarette users (Study 2). We compared nicotine levels when participants used a closed modular system e-cigarette to those when participants smoked a cigarette. RESULTS: In Study 1, Cmax (geometric mean (CV)) during a 5-minute puffing period (10 puffs, 30 seconds apart) was 13.4 (51.4) ng/ ml for a regular cigarette. The e-cigarette Cmax was significantly lower (p .05) at 2.5 (67.8) ng/ml. In Study 2, during a 5-minute ad libitum puffing period, cigarette Cmax was 7.2 (130.8) ng/mL, and it was 7.8 (108.2) ng/mL for the e-cigarette. CONCLUSIONS: Our data demonstrate heterogeneity of nicotine deliveries both between products and also with the same products used by different cohorts, eg, accustomed users versus smokers. Such differences must be taken into account when determining the likely behavioral impact, on smoking reduction and cessation, of nicotine delivery data and when planning e-cigarette nicotine pharmacokinetic studies.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Nicotina/sangre , Nicotina/farmacocinética , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Vapeo
17.
Chem Cent J ; 9: 20, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25941536

RESUMEN

BACKGROUND: Cigarette smoke emissions are mainly produced by distillation, pyrolysis and combustion reactions when the tobacco is burnt. Some studies have shown that heating tobacco to temperatures below pyrolysis and combustion temperatures has the potential to reduce or eliminate some toxicants found in cigarette smoke. In this study, we designed a bench-top tube furnace that heats tobacco between 100-200°C and systematically studied the effects of heating temperatures on selected gas phase and aerosol phase compounds using an ISO machine-smoking protocol. RESULTS: Among a list of target chemical compounds, seven toxicants (nicotine, carbon monoxide, acetaldehyde, crotonaldehyde, formaldehyde, NNN and NNK) were quantifiable but not at all temperatures examined. The levels of the compounds generally displayed an increasing trend with increasing temperatures. The observed carbon monoxide and aldehydes represented the initial thermal breakdown products from the tobacco constituents. Water was the largest measured component in the total aerosol phase collected and appeared to be mainly released by evaporation; nicotine release characteristics were consistent with bond breaking and evaporation. Quantifiable levels of NNK and NNN were thought to be the result of evaporative transfer from the tobacco blend. CONCLUSIONS: These results demonstrate the practical utility of this tool to study low-temperature toxicant formation and emission from heated tobacco. Between 100 to 200°C, nicotine and some cigarette smoke compounds were released as a result of evaporative transfer or initial thermal decomposition from the tobacco blend.

18.
Springerplus ; 3: 374, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25110628

RESUMEN

Cigarette smoking causes serious diseases through frequent and prolonged exposure to toxicants. Technologies are being developed to reduce smokers' toxicant exposure, including filter adsorbents, tobacco treatments and substitutes. This study examined the effect of modifications to filter ventilation, variations in cigarette circumference and active charcoal filter length and loading, as well as combinations of these features in a reduced-toxicant prototype (RTP) cigarette, on the yields of toxicants in cigarette smoke. An air-dilution mechanism, called split-tipping, was developed in which a band of porous paper in the centre of the filter tipping functions to minimise the loss of effective filter ventilation that occurs at the high flow rates encountered during human-smoking, and to facilitate the diffusional loss of volatile toxicants. As compared with conventional filter ventilation cigarettes, split-tipping reduced tar and volatile smoke constituent emissions under high flow rate machine-smoking conditions, most notably for products with a 1-mg ISO tar yield. Furthermore, mouth level exposure (MLE) to tar and nicotine was reduced among smokers of 1-mg ISO tar cigarettes in comparison to smokers of cigarettes with traditional filter ventilation. For higher ISO tar level cigarettes, however, there were no significant reductions in MLE. Smaller cigarette circumferences reduced sidestream toxicant yields and modified the balance of mainstream smoke chemistry with reduced levels of aromatic amines and benzo[a]pyrene but increased yields of formaldehyde. Smaller circumference cigarettes also had lower mainstream yields of volatile toxicants. Longer cigarette filters containing increased levels of high-activity carbon (HAC) showed reduced machine-smoking yields of volatile toxicants: with up to 97% removal for some volatile toxicants at higher HAC loadings. Split-tipping was combined with optimal filter length and cigarette circumference in an RTP cigarette that gave significantly lower mainstream (up to ~90%) and sidestream (predominately 20%-60%) smoke yields of numerous toxicants as compared with a commercial comparator cigarette under machine-smoking conditions. Significantly lower mainstream and sidestream smoke toxicant yields were observed for an RTP cigarette comprising several toxicant reducing technologies; these observations warrant further evaluation in clinical studies where real-world relevance can be tested using biomarkers of exposure and physiological effect.

19.
Chem Cent J ; 5(1): 15, 2011 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-21463512

RESUMEN

BACKGROUND: Cigarette smoking is a well recognized cause of diseases such as lung cancer, chronic obstructive pulmonary disease and cardiovascular disease. Of the more than 5000 identified species in cigarette smoke, at least 150 have toxicological activity. For example, formaldehyde and acetaldehyde have been assigned as Group 1 and Group 2B carcinogens by IARC, and hydrogen cyanide has been identified as a respiratory and cardiovascular toxicant. Active carbon has been shown to be an effective material for the physical adsorption of many of the smoke volatile species. However, physical adsorption of acetaldehyde, formaldehyde and also hydrogen cyanide from smoke is less effective using carbon. Alternative methods for the removal of these species from cigarette smoke are therefore of interest. A macroporous, polystyrene based ion-exchange resin (Diaion®CR20) with surface amine group functionality has been investigated for its ability to react with aldehydes and HCN in an aerosol stream, and thus selectively reduce the yields of these compounds (in particular formaldehyde) in mainstream cigarette smoke. RESULTS: Resin surface chemistry was characterized using vapour sorption, XPS, TOF-SIMS and 15N NMR. Diaion®CR20 was found to have structural characteristics indicating weak physisorption properties, but sufficient surface functionalities to selectively remove aldehydes and HCN from cigarette smoke. Using 60 mg of Diaion®CR20 in a cigarette cavity filter gave reductions in smoke formaldehyde greater than 50% (estimated to be equivalent to >80% of the formaldehyde present in the smoke vapour phase) independent of a range of flow rates. Substantial removal of HCN (>80%) and acetaldehyde (>60%) was also observed. The performance of Diaion®CR20 was found to be consistent over a test period of 6 months. The overall adsorption for the majority of smoke compounds measured appeared to follow a pseudo-first order approximation to second order kinetics. CONCLUSIONS: This study has shown that Diaion®CR20 is a highly selective and efficient adsorbent for formaldehyde, acetaldehyde and HCN in cigarette smoke. The reductions for these compounds were greater than those achieved using an active carbon. The results also demonstrate that chemisorption can be an effective mechanism for the removal of certain vapour phase toxicants from cigarette smoke.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA