Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 151(6): 1308-18, 2012 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-23217712

RESUMEN

In budding yeast, the essential functions of Hsp70 chaperones Ssa1-4 are regulated through expression level, isoform specificity, and cochaperone activity. Suggesting a novel regulatory paradigm, we find that phosphorylation of Ssa1 T36 within a cyclin-dependent kinase (CDK) consensus site conserved among Hsp70 proteins alters cochaperone and client interactions. T36 phosphorylation triggers displacement of Ydj1, allowing Ssa1 to bind the G1 cyclin Cln3 and promote its degradation. The stress CDK Pho85 phosphorylates T36 upon nitrogen starvation or pheromone stimulation, destabilizing Cln3 to delay onset of S phase. In turn, the mitotic CDK Cdk1 phosphorylates T36 to block Cln3 accumulation in G2/M. Suggesting broad conservation from yeast to human, CDK-dependent phosphorylation of Hsc70 T38 similarly regulates Cyclin D1 binding and stability. These results establish an active role for Hsp70 chaperones as signal transducers mediating growth control of G1 cyclin abundance and activity.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Ciclinas/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ciclo Celular , Proliferación Celular , Ciclina D1/metabolismo , Células HEK293 , Proteínas del Choque Térmico HSC70/metabolismo , Humanos , Fosforilación , Saccharomyces cerevisiae/citología
2.
Subcell Biochem ; 101: 389-425, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36520314

RESUMEN

Molecular chaperones and their associated co-chaperones are essential in health and disease as they are key facilitators of protein-folding, quality control and function. In particular, the heat-shock protein (HSP) 70 and HSP90 molecular chaperone networks have been associated with neurodegenerative diseases caused by aberrant protein-folding. The pathogenesis of these disorders usually includes the formation of deposits of misfolded, aggregated protein. HSP70 and HSP90, plus their co-chaperones, have been recognised as potent modulators of misfolded protein toxicity, inclusion formation and cell survival in cellular and animal models of neurodegenerative disease. Moreover, these chaperone machines function not only in folding but also in proteasome-mediated degradation of neurodegenerative disease proteins. This chapter gives an overview of the HSP70 and HSP90 chaperones, and their respective regulatory co-chaperones, and explores how the HSP70 and HSP90 chaperone systems form a larger functional network and its relevance to counteracting neurodegenerative disease associated with misfolded proteins and disruption of proteostasis.


Asunto(s)
Enfermedades Neurodegenerativas , Animales , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Pliegue de Proteína
3.
Mol Cell ; 53(2): 317-29, 2014 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-24462205

RESUMEN

The stability and activity of numerous signaling proteins in both normal and cancer cells depends on the dimeric molecular chaperone heat shock protein 90 (Hsp90). Hsp90's function is coupled to ATP binding and hydrolysis and requires a series of conformational changes that are regulated by cochaperones and numerous posttranslational modifications (PTMs). SUMOylation is one of the least-understood Hsp90 PTMs. Here, we show that asymmetric SUMOylation of a conserved lysine residue in the N domain of both yeast (K178) and human (K191) Hsp90 facilitates both recruitment of the adenosine triphosphatase (ATPase)-activating cochaperone Aha1 and, unexpectedly, the binding of Hsp90 inhibitors, suggesting that these drugs associate preferentially with Hsp90 proteins that are actively engaged in the chaperone cycle. Importantly, cellular transformation is accompanied by elevated steady-state N domain SUMOylation, and increased Hsp90 SUMOylation sensitizes yeast and mammalian cells to Hsp90 inhibitors, providing a mechanism to explain the sensitivity of cancer cells to these drugs.


Asunto(s)
Adenosina Trifosfato/metabolismo , Chaperoninas/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas HSP90 de Choque Térmico/química , Proteínas HSP90 de Choque Térmico/fisiología , Humanos , Estructura Terciaria de Proteína , Sumoilación
4.
EMBO J ; 36(24): 3650-3665, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29127155

RESUMEN

The tumor suppressors Tsc1 and Tsc2 form the tuberous sclerosis complex (TSC), a regulator of mTOR activity. Tsc1 stabilizes Tsc2; however, the precise mechanism involved remains elusive. The molecular chaperone heat-shock protein 90 (Hsp90) is an essential component of the cellular homeostatic machinery in eukaryotes. Here, we show that Tsc1 is a new co-chaperone for Hsp90 that inhibits its ATPase activity. The C-terminal domain of Tsc1 (998-1,164 aa) forms a homodimer and binds to both protomers of the Hsp90 middle domain. This ensures inhibition of both subunits of the Hsp90 dimer and prevents the activating co-chaperone Aha1 from binding the middle domain of Hsp90. Conversely, phosphorylation of Aha1-Y223 increases its affinity for Hsp90 and displaces Tsc1, thereby providing a mechanism for equilibrium between binding of these two co-chaperones to Hsp90. Our findings establish an active role for Tsc1 as a facilitator of Hsp90-mediated folding of kinase and non-kinase clients-including Tsc2-thereby preventing their ubiquitination and proteasomal degradation.


Asunto(s)
Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Células HEK293 , Proteínas HSP90 de Choque Térmico/genética , Humanos , Fosforilación , Fosfotransferasas/metabolismo , Complejo de la Endopetidasa Proteasomal , Pliegue de Proteína , Proteolisis , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/genética , Ubiquitinación
5.
Chemistry ; 26(43): 9459-9465, 2020 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-32167602

RESUMEN

Protein folding quality control in cells requires the activity of a class of proteins known as molecular chaperones. Heat shock protein-90 (Hsp90), a multidomain ATP driven molecular machine, is a prime representative of this family of proteins. Interactions between Hsp90, its co-chaperones, and client proteins have been shown to be important in facilitating the correct folding and activation of clients. Hsp90 levels and functions are elevated in tumor cells. Here, we computationally predict the regions on the native structures of clients c-Abl, c-Src, Cdk4, B-Raf and Glucocorticoid Receptor, that have the highest probability of undergoing local unfolding, despite being ordered in their native structures. Such regions represent potential ideal interaction points with the Hsp90-system. We synthesize mimics spanning these regions and confirm their interaction with partners of the Hsp90 complex (Hsp90, Cdc37 and Aha1) by Nuclear Magnetic Resonance (NMR). Designed mimics selectively disrupt the association of their respective clients with the Hsp90 machinery, leaving unrelated clients unperturbed and causing apoptosis in cancer cells. Overall, selective targeting of Hsp90 protein-protein interactions is achieved without causing indiscriminate degradation of all clients, setting the stage for the development of therapeutics based on specific chaperone:client perturbation.


Asunto(s)
Carcinógenos/química , Proteínas de Ciclo Celular/química , Chaperoninas/química , Proteínas HSP90 de Choque Térmico/química , Chaperonas Moleculares/química , Carcinógenos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Pliegue de Proteína
6.
Mol Cell ; 47(3): 434-43, 2012 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-22727666

RESUMEN

Many critical protein kinases rely on the Hsp90 chaperone machinery for stability and function. After initially forming a ternary complex with kinase client and the cochaperone p50(Cdc37), Hsp90 proceeds through a cycle of conformational changes facilitated by ATP binding and hydrolysis. Progression through the chaperone cycle requires release of p50(Cdc37) and recruitment of the ATPase activating cochaperone AHA1, but the molecular regulation of this complex process at the cellular level is poorly understood. We demonstrate that a series of tyrosine phosphorylation events, involving both p50(Cdc37) and Hsp90, are minimally sufficient to provide directionality to the chaperone cycle. p50(Cdc37) phosphorylation on Y4 and Y298 disrupts client-p50(Cdc37) association, while Hsp90 phosphorylation on Y197 dissociates p50(Cdc37) from Hsp90. Hsp90 phosphorylation on Y313 promotes recruitment of AHA1, which stimulates Hsp90 ATPase activity, furthering the chaperoning process. Finally, at completion of the chaperone cycle, Hsp90 Y627 phosphorylation induces dissociation of the client and remaining cochaperones.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Chaperoninas/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Tirosina/metabolismo , Animales , Células COS , Proteínas de Ciclo Celular/genética , Chaperoninas/genética , Chlorocebus aethiops , Humanos , Ratones , Chaperonas Moleculares/genética , Células 3T3 NIH , Fosforilación/fisiología
7.
Hum Mol Genet ; 26(22): 4465-4480, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-28973376

RESUMEN

Biallelic mutations in the photoreceptor-expressed aryl hydrocarbon receptor interacting protein-like 1 (AIPL1) are associated with autosomal recessive Leber congenital amaurosis (LCA), the most severe form of inherited retinopathy in early childhood. AIPL1 functions as a photoreceptor-specific co-chaperone that interacts with the molecular chaperone HSP90 to facilitate the stable assembly of the retinal cyclic GMP (cGMP) phosphodiesterase (PDE6) holoenzyme. In this study, we characterized the functional deficits of AIPL1 variations, some of which induce aberrant pre-mRNA AIPL1 splicing leading to the production of alternative AIPL1 isoforms. We investigated the ability of the AIPL1 variants to mediate an interaction with HSP90 and modulate the rod cGMP PDE6 stability and activity. Our data revealed that both the FK506 binding protein (FKBP)-like domain and the tetratricopeptide repeat (TPR) domain of AIPL1 are required for interaction with HSP90. We further demonstrate that AIPL1 significantly modulates the catalytic activity of heterologously expressed rod PDE6. Although the N-terminal FKBP-like domain of AIPL1 binds the farnesylated PDE6α subunit through direct interaction with the farnesyl moiety, mutations compromising the integrity of the C-terminal TPR domain of AIPL1 also failed to modulate PDE6 activity efficiently. These AIPL1 variants moreover failed to promote the HSP90-dependent stabilization of the PDE6α subunit in the cytosol. In summary, we have successfully validated the disease-causing status of the AIPL1 variations in vitro. Our findings provide insight into the mechanism underlying the co-chaperone role of AIPL1 and will be critical for ensuring an early and effective diagnosis of AIPL1 LCA patients.


Asunto(s)
Proteínas Portadoras/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/genética , Proteínas del Ojo/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Células CHO , Proteínas Portadoras/química , Cricetulus , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/metabolismo , Proteínas del Ojo/química , Proteínas del Ojo/genética , Células HEK293 , Proteínas HSP90 de Choque Térmico/química , Humanos , Amaurosis Congénita de Leber/genética , Amaurosis Congénita de Leber/metabolismo , Mutación , Unión Proteica , Dominios Proteicos , Precursores del ARN/metabolismo , Retina/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Células Fotorreceptoras Retinianas Bastones/fisiología , Relación Estructura-Actividad
8.
Mol Cell ; 41(6): 672-81, 2011 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-21419342

RESUMEN

Heat shock protein 90 (Hsp90) is an essential molecular chaperone whose activity is regulated not only by cochaperones but also by distinct posttranslational modifications. We report here that casein kinase 2 phosphorylates a conserved threonine residue (T22) in α helix-1 of the yeast Hsp90 N-domain both in vitro and in vivo. This α helix participates in a hydrophobic interaction with the catalytic loop in Hsp90's middle domain, helping to stabilize the chaperone's ATPase-competent state. Phosphomimetic mutation of this residue alters Hsp90 ATPase activity and chaperone function and impacts interaction with the cochaperones Aha1 and Cdc37. Overexpression of Aha1 stimulates the ATPase activity, restores cochaperone interactions, and compensates for the functional defects of these Hsp90 mutants.


Asunto(s)
Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Proteínas HSP90 de Choque Térmico/química , Proteínas HSP90 de Choque Térmico/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Treonina/metabolismo , Quinasa de la Caseína II/genética , Quinasa de la Caseína II/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Chaperoninas/química , Chaperoninas/genética , Chaperoninas/metabolismo , Proteínas Fúngicas/genética , Proteínas HSP90 de Choque Térmico/genética , Humanos , Chaperonas Moleculares/genética , Fosforilación , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
J Med Genet ; 55(8): 522-529, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29632148

RESUMEN

BACKGROUND: Heterozygous germline loss-of-function mutations in the aryl hydrocarbon receptor-interacting protein gene (AIP) predispose to childhood-onset pituitary tumours. The pathogenicity of missense variants may pose difficulties for genetic counselling and family follow-up. OBJECTIVE: To develop an in vivo system to test the pathogenicity of human AIP mutations using the fruit fly Drosophila melanogaster. METHODS: We generated a null mutant of the Drosophila AIP orthologue, CG1847, a gene located on the Xchromosome, which displayed lethality at larval stage in hemizygous knockout male mutants (CG1847exon1_3 ). We tested human missense variants of 'unknown significance', with 'pathogenic' variants as positive control. RESULTS: We found that human AIP can functionally substitute for CG1847, as heterologous overexpression of human AIP rescued male CG1847exon1_3 lethality, while a truncated version of AIP did not restore viability. Flies harbouring patient-specific missense AIP variants (p.C238Y, p.I13N, p.W73R and p.G272D) failed to rescue CG1847exon1_3 mutants, while seven variants (p.R16H, p.Q164R, p.E293V, p.A299V, p.R304Q, p.R314W and p.R325Q) showed rescue, supporting a non-pathogenic role for these latter variants corresponding to prevalence and clinical data. CONCLUSION: Our in vivo model represents a valuable tool to characterise putative disease-causing human AIP variants and assist the genetic counselling and management of families carrying AIP variants.


Asunto(s)
Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Péptidos y Proteínas de Señalización Intracelular/genética , Mutación Missense , Alelos , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Animales Modificados Genéticamente , Bioensayo , Drosophila melanogaster , Femenino , Expresión Génica , Estudios de Asociación Genética/métodos , Pruebas Genéticas , Genotipo , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Mutación con Pérdida de Función , Pérdida de Heterocigocidad , Masculino , Modelos Moleculares , Neoplasias Hipofisarias/diagnóstico , Neoplasias Hipofisarias/genética , Conformación Proteica , Relación Estructura-Actividad
10.
Nat Chem Biol ; 12(8): 628-35, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27322067

RESUMEN

The Hsp90 chaperone is a central node of protein homeostasis, activating many diverse client proteins. Hsp90 functions as a molecular clamp that closes and opens in response to the binding and hydrolysis of ATP. Crystallographic studies have defined distinct conformational states of the mechanistic core, implying structural changes that have not yet been observed in solution. Here we engineered one-nanometer fluorescence probes based on photoinduced electron transfer into the yeast Hsp90 to observe these motions. We found that the ATPase activity of the chaperone was reflected in the kinetics of specific structural rearrangements at remote positions that acted cooperatively. Nanosecond single-molecule fluorescence fluctuation analysis uncovered that critical structural elements that undergo rearrangement were mobile on a sub-millisecond time scale. We identified a two-step mechanism for lid closure over the nucleotide-binding pocket. The activating co-chaperone Aha1 mobilized the lid of apo Hsp90, suggesting an early role in the catalytic cycle.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Colorantes Fluorescentes/análisis , Proteínas HSP90 de Choque Térmico/química , Proteínas HSP90 de Choque Térmico/metabolismo , Movimiento , Biocatálisis , Transporte de Electrón , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/química , Cinética , Modelos Moleculares , Conformación Proteica , Imagen Individual de Molécula , Levaduras
11.
Mol Cell ; 39(2): 269-81, 2010 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-20670895

RESUMEN

Hsp90-mediated function of NLR receptors in plant and animal innate immunity depends on the cochaperone Sgt1 and, at least in plants, on a cysteine- and histidine-rich domains (CHORD)-containing protein Rar1. Functionally, CHORD domains are associated with CS domains, either within the same protein, as in the mammalian melusin and Chp1, or in separate but interacting proteins, as in the plant Rar1 and Sgt1. Both CHORD and CS domains are independently capable of interacting with the molecular chaperone Hsp90 and can coexist in complexes with Hsp90. We have now determined the structure of an Hsp90-CS-CHORD ternary complex, providing a framework for understanding the dynamic nature of Hsp90-Rar1-Sgt1 complexes. Mutational and biochemical analyses define the architecture of the ternary complex that recruits nucleotide-binding leucine-rich repeat receptors (NLRs) by manipulating the structural elements to control the ATPase-dependent conformational cycle of the chaperone.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Portadoras/metabolismo , Glucosiltransferasas/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Complejos Multiproteicos/metabolismo , Animales , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas Portadoras/genética , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Glucosiltransferasas/genética , Proteínas HSP90 de Choque Térmico/genética , Péptidos y Proteínas de Señalización Intracelular , Complejos Multiproteicos/genética , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Nicotiana/genética , Nicotiana/metabolismo
12.
Mol Cell ; 37(3): 333-43, 2010 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-20159553

RESUMEN

Saccharomyces WEE1 (Swe1), the only "true" tyrosine kinase in budding yeast, is an Hsp90 client protein. Here we show that Swe1(Wee1) phosphorylates a conserved tyrosine residue (Y24 in yeast Hsp90 and Y38 in human Hsp90alpha) in the N domain of Hsp90. Phosphorylation is cell-cycle associated and modulates the ability of Hsp90 to chaperone a selected clientele, including v-Src and several other kinases. Nonphosphorylatable mutants have normal ATPase activity, support yeast viability, and productively chaperone the Hsp90 client glucocorticoid receptor. Deletion of SWE1 in yeast increases Hsp90 binding to its inhibitor geldanamycin, and pharmacologic inhibition/silencing of Wee1 sensitizes cancer cells to Hsp90 inhibitor-induced apoptosis. These findings demonstrate that Hsp90 chaperoning of distinct client proteins is differentially regulated by specific posttranslational modification of a unique subcellular pool of the chaperone, and they provide a strategy to increase the cellular potency of Hsp90 inhibitors.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas Tirosina Quinasas/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Tirosina/metabolismo , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Dimerización , Proteínas HSP90 de Choque Térmico/fisiología , Humanos , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/genética , Proteínas Nucleares/fisiología , Fosforilación , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/genética , Interferencia de ARN , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitinación
13.
Adv Exp Med Biol ; 1106: 73-83, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30484153

RESUMEN

Cellular stability, assembly and activation of a growing list of macromolecular complexes require the action of HSP90 working in concert with the R2TP/Prefoldin-like (R2TP/PFDL) co-chaperone. RNA polymerase II, snoRNPs and complexes of PI3-kinase-like kinases, a family that includes the ATM, ATR, DNA-PKcs, TRAPP, SMG1 and mTOR proteins, are among the clients of the HSP90-R2TP system. Evidence links the R2TP/PFDL pathway with cancer, most likely because of the essential role in pathways commonly deregulated in cancer. R2TP forms the core of the co-cochaperone and orchestrates the recruitment of HSP90 and clients, whereas prefoldin and additional prefoldin-like proteins, including URI, associate with R2TP, but their function is still unclear. The mechanism by which R2TP/PFLD facilitates assembly and activation of such a variety of macromolecular complexes is poorly understood. Recent efforts in the structural characterization of R2TP have started to provide some mechanistic insights. We summarize recent structural findings, particularly how cryo-electron microscopy (cryo-EM) is contributing to our understanding of the architecture of the R2TP core complex. Structural differences discovered between yeast and human R2TP reveal unanticipated complexities of the metazoan R2TP complex, and opens new and interesting questions about how R2TP/PFLD works.


Asunto(s)
Chaperonas Moleculares/química , Animales , Microscopía por Crioelectrón , Proteínas HSP90 de Choque Térmico/química , Humanos , Neoplasias , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae
14.
Biochem J ; 473(16): 2439-52, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27515256

RESUMEN

Heat shock protein 90 (Hsp90) is a molecular chaperone that is involved in the activation of disparate client proteins. This implicates Hsp90 in diverse biological processes that require a variety of co-ordinated regulatory mechanisms to control its activity. Perhaps the most important regulator is heat shock factor 1 (HSF1), which is primarily responsible for upregulating Hsp90 by binding heat shock elements (HSEs) within Hsp90 promoters. HSF1 is itself subject to a variety of regulatory processes and can directly respond to stress. HSF1 also interacts with a variety of transcriptional factors that help integrate biological signals, which in turn regulate Hsp90 appropriately. Because of the diverse clientele of Hsp90 a whole variety of co-chaperones also regulate its activity and some are directly responsible for delivery of client protein. Consequently, co-chaperones themselves, like Hsp90, are also subject to regulatory mechanisms such as post translational modification. This review, looks at the many different levels by which Hsp90 activity is ultimately regulated.


Asunto(s)
Proteínas HSP90 de Choque Térmico/metabolismo , Adenosina Trifosfatasas/metabolismo , Dominio Catalítico , Regulación de la Expresión Génica , Proteínas HSP90 de Choque Térmico/química , Proteínas HSP90 de Choque Térmico/genética , Respuesta al Choque Térmico , Humanos , Conformación Proteica , Procesamiento Proteico-Postraduccional , Transducción de Señal , Factores de Transcripción/metabolismo
15.
Mol Cell ; 31(6): 886-95, 2008 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-18922470

RESUMEN

Activation of protein kinase clients by the Hsp90 system is mediated by the cochaperone protein Cdc37. Cdc37 requires phosphorylation at Ser13, but little is known about the regulation of this essential posttranslational modification. We show that Ser13 of uncomplexed Cdc37 is phosphorylated in vivo, as well as in binary complex with a kinase (C-K), or in ternary complex with Hsp90 and kinase (H-C-K). Whereas pSer13-Cdc37 in the H-C-K complex is resistant to nonspecific phosphatases, it is efficiently dephosphorylated by the chaperone-targeted protein phosphatase 5 (PP5/Ppt1), which does not affect isolated Cdc37. We show that Cdc37 and PP5/Ppt1 associate in Hsp90 complexes in yeast and in human tumor cells, and that PP5/Ppt1 regulates phosphorylation of Ser13-Cdc37 in vivo, directly affecting activation of protein kinase clients by Hsp90-Cdc37. These data reveal a cyclic regulatory mechanism for Cdc37, in which its constitutive phosphorylation is reversed by targeted dephosphorylation in Hsp90 complexes.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Chaperoninas/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas Quinasas/metabolismo , Especificidad de Anticuerpos , Quinasa 4 Dependiente de la Ciclina/metabolismo , Activación Enzimática , Células HCT116 , Humanos , Modelos Biológicos , Mutación/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Fosfoserina/metabolismo , Unión Proteica , Proteína Fosfatasa 1/metabolismo , Proteínas Proto-Oncogénicas c-raf/metabolismo , Saccharomyces cerevisiae , Especificidad por Sustrato
16.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 5): 1197-206, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25945584

RESUMEN

Specific co-chaperone adaptors facilitate the recruitment of client proteins to the Hsp90 system. Tah1 binds the C-terminal conserved MEEVD motif of Hsp90, thus linking an eclectic set of client proteins to the R2TP complex for their assembly and regulation by Hsp90. Rather than the normal complement of seven α-helices seen in other tetratricopeptide repeat (TPR) domains, Tah1 unusually consists of the first five only. Consequently, the methionine of the MEEVD peptide remains exposed to solvent when bound by Tah1. In solution Tah1 appears to be predominantly monomeric, and recent structures have failed to explain how Tah1 appears to prevent the formation of mixed TPR domain-containing complexes such as Cpr6-(Hsp90)2-Tah1. To understand this further, the crystal structure of Tah1 in complex with the MEEVD peptide of Hsp90 was determined, which shows a helix swap involving the fifth α-helix between two adjacently bound Tah1 molecules. Dimerization of Tah1 restores the normal binding environment of the bound Hsp90 methionine residue by reconstituting a TPR binding site similar to that in seven-helix-containing TPR domain proteins. Dimerization also explains how other monomeric TPR-domain proteins are excluded from forming inappropriate mixed co-chaperone complexes.


Asunto(s)
Ciclofilinas/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Peptidil-Prolil Isomerasa F , Ciclofilinas/química , Proteínas HSP90 de Choque Térmico/química , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Chaperonas Moleculares/química , Datos de Secuencia Molecular , Complejos Multiproteicos/química , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Estructura Secundaria de Proteína , Proteínas de Saccharomyces cerevisiae/química , Homología de Secuencia de Aminoácido
18.
Nat Chem Biol ; 9(5): 307-12, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23502424

RESUMEN

Protein kinase clients are recruited to the Hsp90 molecular chaperone system via Cdc37, which simultaneously binds Hsp90 and kinases and regulates the Hsp90 chaperone cycle. Pharmacological inhibition of Hsp90 in vivo results in degradation of kinase clients, with a therapeutic effect in dependent tumors. We show here that Cdc37 directly antagonizes ATP binding to client kinases, suggesting a role for the Hsp90-Cdc37 complex in controlling kinase activity. Unexpectedly, we find that Cdc37 binding to protein kinases is itself antagonized by ATP-competitive kinase inhibitors, including vemurafenib and lapatinib. In cancer cells, these inhibitors deprive oncogenic kinases such as B-Raf and ErbB2 of access to the Hsp90-Cdc37 complex, leading to their degradation. Our results suggest that at least part of the efficacy of ATP-competitive inhibitors of Hsp90-dependent kinases in tumor cells may be due to targeted chaperone deprivation.


Asunto(s)
Adenosina Trifosfato/antagonistas & inhibidores , Proteínas de Ciclo Celular/metabolismo , Chaperoninas/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Indoles/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas/metabolismo , Quinazolinas/farmacología , Sulfonamidas/farmacología , Unión Competitiva , Indoles/química , Lapatinib , Inhibidores de Proteínas Quinasas/química , Quinazolinas/química , Relación Estructura-Actividad , Sulfonamidas/química , Vemurafenib
19.
Proc Natl Acad Sci U S A ; 109(8): 2937-42, 2012 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-22315411

RESUMEN

Hsp90 is an essential and highly conserved modular molecular chaperone whose N and middle domains are separated by a disordered region termed the charged linker. Although its importance has been previously disregarded, because a minimal linker length is sufficient for Hsp90 activity, the evolutionary persistence of extensive charged linkers of divergent sequence in Hsp90 proteins of most eukaryotes remains unexplained. To examine this question further, we introduced human and plasmodium native and length-matched artificial linkers into yeast Hsp90. After evaluating ATPase activity and biophysical characteristics in vitro, and chaperone function in vivo, we conclude that linker sequence affects Hsp90 function, cochaperone interaction, and conformation. We propose that the charged linker, in addition to providing the flexibility necessary for Hsp90 domain rearrangements--likely its original purpose--has evolved in eukaryotes to serve as a rheostat for the Hsp90 chaperone machine.


Asunto(s)
Células Eucariotas/metabolismo , Proteínas HSP90 de Choque Térmico/química , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Deuterio/metabolismo , Humanos , Datos de Secuencia Molecular , Péptido Hidrolasas/metabolismo , Unión Proteica , Saccharomyces cerevisiae/metabolismo , Solventes , Relación Estructura-Actividad
20.
Org Biomol Chem ; 12(8): 1328-40, 2014 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-24435512

RESUMEN

A series of macrolactam analogues of the naturally occurring resorcylic acid lactone radicicol have been synthesised from methyl orsellinate in 7 steps, involving chlorination, protection of the two phenolic groups, and hydrolysis to the benzoic acid. Formation of the dianion and quenching with a Weinreb amide results in acylation of the toluene methyl group that is followed by amide formation and ring closing metathesis to form the macrocyclic lactam. Final deprotection of the phenolic groups gives the desired macrolactams whose binding to the N-terminal domain of yeast Hsp90 was studied by isothermal titration calorimetry and protein X-ray crystallography.


Asunto(s)
Antifúngicos/química , Proteínas HSP90 de Choque Térmico/metabolismo , Lactamas Macrocíclicas/química , Macrólidos/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Antifúngicos/síntesis química , Antifúngicos/farmacología , Cristalografía por Rayos X , Proteínas HSP90 de Choque Térmico/química , Lactamas Macrocíclicas/síntesis química , Lactamas Macrocíclicas/farmacología , Macrólidos/síntesis química , Macrólidos/farmacología , Modelos Moleculares , Unión Proteica , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/efectos de los fármacos , Proteínas de Saccharomyces cerevisiae/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA