Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Epilepsia ; 63(4): 974-991, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35179230

RESUMEN

OBJECTIVE: Epilepsy is common in patients with PIGN diseases due to biallelic variants; however, limited epilepsy phenotyping data have been reported. We describe the epileptology of PIGN encephalopathy. METHODS: We recruited patients with epilepsy due to biallelic PIGN variants and obtained clinical data regarding age at seizure onset/offset and semiology, development, medical history, examination, electroencephalogram, neuroimaging, and treatment. Seizure and epilepsy types were classified. RESULTS: Twenty six patients (13 female) from 26 families were identified, with mean age 7 years (range = 1 month to 21 years; three deceased). Abnormal development at seizure onset was present in 25 of 26. Developmental outcome was most frequently profound (14/26) or severe (11/26). Patients presented with focal motor (12/26), unknown onset motor (5/26), focal impaired awareness (1/26), absence (2/26), myoclonic (2/26), myoclonic-atonic (1/26), and generalized tonic-clonic (2/26) seizures. Twenty of 26 were classified as developmental and epileptic encephalopathy (DEE): 55% (11/20) focal DEE, 30% (6/20) generalized DEE, and 15% (3/20) combined DEE. Six had intellectual disability and epilepsy (ID+E): two generalized and four focal epilepsy. Mean age at seizure onset was 13 months (birth to 10 years), with a lower mean onset in DEE (7 months) compared with ID+E (33 months). Patients with DEE had drug-resistant epilepsy, compared to 4/6 ID+E patients, who were seizure-free. Hyperkinetic movement disorder occurred in 13 of 26 patients. Twenty-seven of 34 variants were novel. Variants were truncating (n = 7), intronic and predicted to affect splicing (n = 7), and missense or inframe indels (n = 20, of which 11 were predicted to affect splicing). Seven variants were recurrent, including p.Leu311Trp in 10 unrelated patients, nine with generalized seizures, accounting for nine of the 11 patients in this cohort with generalized seizures. SIGNIFICANCE: PIGN encephalopathy is a complex autosomal recessive disorder associated with a wide spectrum of epilepsy phenotypes, typically with substantial profound to severe developmental impairment.


Asunto(s)
Epilepsia Refractaria , Epilepsia , Discapacidad Intelectual , Electroencefalografía , Epilepsia/diagnóstico por imagen , Epilepsia/genética , Femenino , Humanos , Discapacidad Intelectual/diagnóstico por imagen , Discapacidad Intelectual/genética , Fenotipo , Convulsiones/genética
2.
Hum Mutat ; 42(3): 310-319, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33348459

RESUMEN

Ferrodoxin reductase (FDXR) deficiency is a mitochondrial disease described in recent years primarily in association with optic atrophy, acoustic neuropathy, and developmental delays. Here, we identified seven unpublished patients with FDXR deficiency belonging to six independent families. These patients show a broad clinical spectrum ranging from Leigh syndrome with early demise and severe infantile-onset encephalopathy, to milder movement disorders. In total nine individual pathogenic variants, of which seven were novel, were identified in FDXR using whole exome sequencing in suspected mitochondrial disease patients. Over 80% of these variants are missense, a challenging variant class in which to determine pathogenic consequence, especially in the setting of nonspecific phenotypes and in the absence of a reliable biomarker, necessitating functional validation. Here we implement an Arh1-null yeast model to confirm the pathogenicity of variants of uncertain significance in FDXR, bypassing the requirement for patient-derived material.


Asunto(s)
Enfermedad de Leigh , Enfermedades Mitocondriales , Atrofia Óptica , Humanos , Enfermedad de Leigh/genética , Enfermedades Mitocondriales/genética , Atrofia Óptica/genética , Fenotipo , Secuenciación del Exoma
3.
Am J Hum Genet ; 102(3): 460-467, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29429571

RESUMEN

Respiratory chain complex I deficiency is the most frequently identified biochemical defect in childhood mitochondrial diseases. Clinical symptoms range from fatal infantile lactic acidosis to Leigh syndrome and other encephalomyopathies or cardiomyopathies. To date, disease-causing variants in genes coding for 27 complex I subunits, including 7 mitochondrial DNA genes, and in 11 genes encoding complex I assembly factors have been reported. Here, we describe rare biallelic variants in NDUFB8 encoding a complex I accessory subunit revealed by whole-exome sequencing in two individuals from two families. Both presented with a progressive course of disease with encephalo(cardio)myopathic features including muscular hypotonia, cardiac hypertrophy, respiratory failure, failure to thrive, and developmental delay. Blood lactate was elevated. Neuroimaging disclosed progressive changes in the basal ganglia and either brain stem or internal capsule. Biochemical analyses showed an isolated decrease in complex I enzymatic activity in muscle and fibroblasts. Complementation studies by expression of wild-type NDUFB8 in cells from affected individuals restored mitochondrial function, confirming NDUFB8 variants as the cause of complex I deficiency. Hereby we establish NDUFB8 as a relevant gene in childhood-onset mitochondrial disease.


Asunto(s)
Encefalopatías/genética , Complejo I de Transporte de Electrón/deficiencia , Enfermedad de Leigh/genética , Enfermedades Mitocondriales/genética , Mutación/genética , Secuencia de Aminoácidos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Complejo I de Transporte de Electrón/química , Complejo I de Transporte de Electrón/genética , Femenino , Fibroblastos/enzimología , Fibroblastos/patología , Humanos , Imagen por Resonancia Magnética , Masculino , Fosforilación Oxidativa , Linaje , Porinas/metabolismo
4.
Nephrol Dial Transplant ; 36(8): 1484-1492, 2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-33099630

RESUMEN

BACKGROUND: Infantile hypercalcaemia (IH) is a vitamin D3 metabolism disorder. The molecular basis for IH is biallelic mutations in the CYP24A1 or SLC34A1 gene. These changes lead to catabolism disorders (CYP24A1 mutations) or excessive generation of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] (SLC34A1 mutations). The incidence rate of IH in children and the risk level for developing end-stage renal disease (ESRD) are still unknown. The aim of this study was to analyse the long-term outcome of adolescents and young adults who suffered from IH in infancy. DESIGN: Forty-two children (23 girls; average age 10.7 ± 6.3 years) and 26 adults (14 women; average age 24.2 ± 4.4 years) with a personal history of hypercalcaemia with elevated 1,25(OH)2D3 levels were included in the analysis. In all patients, a genetic analysis of possible IH mutations was conducted, as well as laboratory tests and renal ultrasonography. RESULTS: IH was confirmed in 20 studied patients (10 females). CYP24A1 mutations were found in 16 patients (8 females) and SLC34A1 in 4 patients (2 females). The long-term outcome was assessed in 18 patients with an average age of 23.8 years (age range 2-34). The average glomerular filtration rate (GFR) was 72 mL/min/1.73 m2 (range 15-105). Two patients with a CYP24A1 mutation developed ESRD and underwent renal transplantation. A GFR <90 mL/min/1.73 m2 was found in 14 patients (77%), whereas a GFR <60 mL/min/1.73 m2 was seen in 5 patients (28%), including 2 adults after renal transplantation. Three of 18 patients still had serum calcium levels >2.6 mmol/L. A renal ultrasound revealed nephrocalcinosis in 16 of 18 (88%) patients, however, mild hypercalciuria was detected in only one subject. CONCLUSIONS: Subjects who suffered from IH have a greater risk of progressive chronic kidney disease and nephrocalcinosis. This indicates that all survivors of IH should be closely monitored, with early implementation of preventive measures, e.g. inhibition of active metabolites of vitamin D3 synthesis.


Asunto(s)
Hipercalcemia , Nefrocalcinosis , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIa , Vitamina D3 24-Hidroxilasa , Adolescente , Adulto , Niño , Preescolar , Femenino , Humanos , Hipercalcemia/genética , Masculino , Mutación , Nefrocalcinosis/genética , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIa/genética , Sobrevivientes , Vitamina D3 24-Hidroxilasa/genética , Adulto Joven
5.
Am J Hum Genet ; 99(4): 894-902, 2016 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-27616477

RESUMEN

To safeguard the cell from the accumulation of potentially harmful metabolic intermediates, specific repair mechanisms have evolved. APOA1BP, now renamed NAXE, encodes an epimerase essential in the cellular metabolite repair for NADHX and NADPHX. The enzyme catalyzes the epimerization of NAD(P)HX, thereby avoiding the accumulation of toxic metabolites. The clinical importance of the NAD(P)HX repair system has been unknown. Exome sequencing revealed pathogenic biallelic mutations in NAXE in children from four families with (sub-) acute-onset ataxia, cerebellar edema, spinal myelopathy, and skin lesions. Lactate was elevated in cerebrospinal fluid of all affected individuals. Disease onset was during the second year of life and clinical signs as well as episodes of deterioration were triggered by febrile infections. Disease course was rapidly progressive, leading to coma, global brain atrophy, and finally to death in all affected individuals. NAXE levels were undetectable in fibroblasts from affected individuals of two families. In these fibroblasts we measured highly elevated concentrations of the toxic metabolite cyclic-NADHX, confirming a deficiency of the mitochondrial NAD(P)HX repair system. Finally, NAD or nicotinic acid (vitamin B3) supplementation might have therapeutic implications for this fatal disorder.


Asunto(s)
Proteínas Portadoras/genética , Enfermedades Metabólicas/genética , Mutación , NAD/análogos & derivados , Enfermedades del Sistema Nervioso/genética , Racemasas y Epimerasas/genética , Proteínas Portadoras/metabolismo , Línea Celular , Preescolar , Resultado Fatal , Femenino , Fibroblastos , Humanos , Lactante , Masculino , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/patología , NAD/metabolismo , Enfermedades del Sistema Nervioso/metabolismo , Enfermedades del Sistema Nervioso/patología , Neuroimagen , Anomalías Cutáneas/genética , Anomalías Cutáneas/patología
6.
Am J Hum Genet ; 99(1): 217-27, 2016 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-27374774

RESUMEN

Complex I deficiency is the most common biochemical phenotype observed in individuals with mitochondrial disease. With 44 structural subunits and over 10 assembly factors, it is unsurprising that complex I deficiency is associated with clinical and genetic heterogeneity. Massively parallel sequencing (MPS) technologies including custom, targeted gene panels or unbiased whole-exome sequencing (WES) are hugely powerful in identifying the underlying genetic defect in a clinical diagnostic setting, yet many individuals remain without a genetic diagnosis. These individuals might harbor mutations in poorly understood or uncharacterized genes, and their diagnosis relies upon characterization of these orphan genes. Complexome profiling recently identified TMEM126B as a component of the mitochondrial complex I assembly complex alongside proteins ACAD9, ECSIT, NDUFAF1, and TIMMDC1. Here, we describe the clinical, biochemical, and molecular findings in six cases of mitochondrial disease from four unrelated families affected by biallelic (c.635G>T [p.Gly212Val] and/or c.401delA [p.Asn134Ilefs(∗)2]) TMEM126B variants. We provide functional evidence to support the pathogenicity of these TMEM126B variants, including evidence of founder effects for both variants, and establish defects within this gene as a cause of complex I deficiency in association with either pure myopathy in adulthood or, in one individual, a severe multisystem presentation (chronic renal failure and cardiomyopathy) in infancy. Functional experimentation including viral rescue and complexome profiling of subject cell lines has confirmed TMEM126B as the tenth complex I assembly factor associated with human disease and validates the importance of both genome-wide sequencing and proteomic approaches in characterizing disease-associated genes whose physiological roles have been previously undetermined.


Asunto(s)
Alelos , Complejo I de Transporte de Electrón/deficiencia , Proteínas de la Membrana/genética , Enfermedades Mitocondriales/genética , Mutación/genética , Fenotipo , Adolescente , Adulto , Edad de Inicio , Secuencia de Aminoácidos , Niño , Complejo I de Transporte de Electrón/genética , Femenino , Humanos , Lactante , Masculino , Proteínas de la Membrana/química , Persona de Mediana Edad , Linaje , Adulto Joven
7.
Hum Mutat ; 39(4): 563-578, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29314548

RESUMEN

In recent years, an increasing number of mitochondrial disorders have been associated with mutations in mitochondrial aminoacyl-tRNA synthetases (mt-aaRSs), which are key enzymes of mitochondrial protein synthesis. Bi-allelic functional variants in VARS2, encoding the mitochondrial valyl tRNA-synthetase, were first reported in a patient with psychomotor delay and epilepsia partialis continua associated with an oxidative phosphorylation (OXPHOS) Complex I defect, before being described in a patient with a neonatal form of encephalocardiomyopathy. Here we provide a detailed genetic, clinical, and biochemical description of 13 patients, from nine unrelated families, harboring VARS2 mutations. All patients except one, who manifested with a less severe disease course, presented at birth exhibiting severe encephalomyopathy and cardiomyopathy. Features included hypotonia, psychomotor delay, seizures, feeding difficulty, abnormal cranial MRI, and elevated lactate. The biochemical phenotype comprised a combined Complex I and Complex IV OXPHOS defect in muscle, with patient fibroblasts displaying normal OXPHOS activity. Homology modeling supported the pathogenicity of VARS2 missense variants. The detailed description of this cohort further delineates our understanding of the clinical presentation associated with pathogenic VARS2 variants and we recommend that this gene should be considered in early-onset mitochondrial encephalomyopathies or encephalocardiomyopathies.


Asunto(s)
Antígenos HLA/genética , Encefalomiopatías Mitocondriales , ATPasas de Translocación de Protón Mitocondriales/deficiencia , Valina-ARNt Ligasa/genética , Niño , Preescolar , Estudios de Cohortes , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Encefalomiopatías Mitocondriales/genética , Encefalomiopatías Mitocondriales/metabolismo , Encefalomiopatías Mitocondriales/fisiopatología , ATPasas de Translocación de Protón Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Mutación Missense , Fosforilación Oxidativa , Filogenia
8.
Am J Hum Genet ; 96(2): 245-57, 2015 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-25597510

RESUMEN

We studied a group of individuals with elevated urinary excretion of 3-methylglutaconic acid, neutropenia that can develop into leukemia, a neurological phenotype ranging from nonprogressive intellectual disability to a prenatal encephalopathy with progressive brain atrophy, movement disorder, cataracts, and early death. Exome sequencing of two unrelated individuals and subsequent Sanger sequencing of 16 individuals with an overlapping phenotype identified a total of 14 rare, predicted deleterious alleles in CLPB in 14 individuals from 9 unrelated families. CLPB encodes caseinolytic peptidase B homolog ClpB, a member of the AAA+ protein family. To evaluate the relevance of CLPB in the pathogenesis of this syndrome, we developed a zebrafish model and an in vitro assay to measure ATPase activity. Suppression of clpb in zebrafish embryos induced a central nervous system phenotype that was consistent with cerebellar and cerebral atrophy that could be rescued by wild-type, but not mutant, human CLPB mRNA. Consistent with these data, the loss-of-function effect of one of the identified variants (c.1222A>G [p.Arg408Gly]) was supported further by in vitro evidence with the mutant peptides abolishing ATPase function. Additionally, we show that CLPB interacts biochemically with ATP2A2, known to be involved in apoptotic processes in severe congenital neutropenia (SCN) 3 (Kostmann disease [caused by HAX1 mutations]). Taken together, mutations in CLPB define a syndrome with intellectual disability, congenital neutropenia, progressive brain atrophy, movement disorder, cataracts, and 3-methylglutaconic aciduria.


Asunto(s)
Anomalías Múltiples/genética , Encéfalo/patología , Endopeptidasa Clp/genética , Discapacidad Intelectual/genética , Errores Innatos del Metabolismo/genética , Anomalías Múltiples/patología , Adenosina Trifosfatasas/metabolismo , Animales , Atrofia/genética , Atrofia/patología , Secuencia de Bases , Catarata/genética , Catarata/patología , Endopeptidasa Clp/metabolismo , Exoma/genética , Humanos , Discapacidad Intelectual/patología , Errores Innatos del Metabolismo/patología , Datos de Secuencia Molecular , Trastornos del Movimiento/genética , Trastornos del Movimiento/patología , Neutropenia/genética , Neutropenia/patología , Polimorfismo de Nucleótido Simple/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Análisis de Secuencia de ADN , Pez Cebra
9.
J Hum Genet ; 63(4): 473-485, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29410512

RESUMEN

Most of the 19 mitochondrial aminoacyl-tRNA synthetases (mt-aaRSs) involved in mitochondrial protein synthesis are already linked to specific entities, one of the exceptions being PARS2 mutations for which pathogenic significance is not finally validated. The aim of the study was to characterize the PARS2- related phenotype.Three siblings with biallelic PARS2 mutations presented from birth with infantile spasms, secondary microcephaly, and similar facial dysmorphy. Mental development was deeply impaired with speech absence and no eye contact. A dilated cardiomyopathy and multiorgan failure developed in childhood at the terminal stage, together with mitochondrial dysfunction triggered by valproate administration.Brain MRI showed progressive volume loss of the frontal lobes, both cortical and subcortical, with widening of the cortical sulci and frontal horns of the lateral ventricles. Hypoplasia of the corpus callosum and progressive demyelination were additional findings. Similar brain features were seen in three already reported PARS2 patients and seemed specific for this defect when compared with other mt-aaRSs defects (DARS2, EARS2, IARS2, and RARS2).Striking resemblance of the phenotype and Alpers-like brain MRI changes with predominance of frontal cerebral volume loss (FCVL-AS) in six patients from three families of different ethnicity with PARS2 mutations, justifies to distinguish the condition as a new disease entity.


Asunto(s)
Alelos , Aminoacil-ARNt Sintetasas/genética , Estudios de Asociación Genética , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/genética , Mutación , Fenotipo , Aminoacil-ARNt Sintetasas/química , Biomarcadores , Encéfalo/anomalías , Encéfalo/diagnóstico por imagen , Electroencefalografía , Facies , Femenino , Humanos , Recién Nacido , Imagen por Resonancia Magnética , Masculino , Modelos Moleculares , Linaje , Conformación Proteica , Secuenciación del Exoma
10.
Metab Brain Dis ; 33(1): 191-199, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29116603

RESUMEN

Leigh syndrome (LS), subacute necrotizing encephalomyelopathy is caused by various genetic defects, including m.9185T>C MTATP6 variant. Mechanism of LS development remains unknown. We report on the acid-base status of three patients with m.9185T>C related LS. At the onset, it showed respiratory alkalosis, reflecting excessive respiration effort (hyperventilation with low pCO2). In patient 1, the deterioration occurred in temporal relation to passive oxygen therapy. To the contrary, on the recovery, she demonstrated a relatively low respiratory drive, suggesting that a "hypoventilation" might be beneficial for m.9185T>C carriers. As long as circumstances of the development of LS have not been fully explained, we recommend to counteract hyperventilation and carefully dose oxygen in patients with m.9185T>C related LS.


Asunto(s)
Hiperventilación/genética , Enfermedad de Leigh/genética , ATPasas de Translocación de Protón Mitocondriales/genética , Mutación/genética , Adulto , Alcalosis Respiratoria/genética , Niño , Preescolar , Humanos , Hiperventilación/diagnóstico , Enfermedad de Leigh/diagnóstico
11.
Am J Med Genet A ; 173(11): 3093-3097, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28944608

RESUMEN

Ichthyosis with confetti (IWC) is a severe congenital genodermatosis characterized by ichthyosiform erythroderma since birth and confetti-like spots of normal skin appearing in childhood as a results of revertant mosaicism. This disorder is caused by mutations in KRT10 or KRT1 genes. We report a 16-year-old boy who presented ichthyosiform erythroderma with severe desquamation since birth and gradually worsening psycho-neurological symptoms (mental retardation, ataxia, dystonia, hypoacusis). The patient conspicuously lacked typical confetti-like spots at the age of 16. The molecular diagnostics by the whole exome sequencing showed a novel de novo (c.1374-2A>C) mutation in the KRT10 gene responsible for the development of IWC (KRT10 defect was confirmed by immunofluorescent study). Concurrently, the m.14484T>C mutation in mitochondrial MTND6 gene (characteristic for Leber's hereditary optic neuropathy or LHON) was detected in patient, his mother and brother. LHON causes frequent inherited blindness typically appearing during young adult life whose expression can be triggered by additional factors such as smoking or alcohol exposure. We speculate the effects of KRT10 and LHON mutations influence each other-skin inflammatory reaction due to severe ichthyosis might trigger the development of psychoneurological abnormalities whereas the mitochondrial mutation may reduce revertant mosaicism phenomenon resulting in the lack of confetti-like spots characteristic for IWC. However, based on a single case we should be cautious about attributing phenotypes to digenic mechanisms without functional data.


Asunto(s)
Genoma Mitocondrial/genética , Ictiosis/genética , Queratina-10/genética , Atrofia Óptica Hereditaria de Leber/genética , Adolescente , Predisposición Genética a la Enfermedad , Humanos , Ictiosis/patología , Recién Nacido , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Masculino , Mutación , Atrofia Óptica Hereditaria de Leber/patología , Fenotipo
12.
J Inherit Metab Dis ; 40(6): 853-860, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28687938

RESUMEN

Recently, CLPB deficiency has been shown to cause a genetic syndrome with cataracts, neutropenia, and 3-methylglutaconic aciduria. Surprisingly, the neurological presentation ranges from completely unaffected to patients with virtual absence of development. Muscular hypo- and hypertonia, movement disorder and progressive brain atrophy are frequently reported. We present the foetal, peri- and neonatal features of 31 patients, of which five are previously unreported, using a newly developed clinical severity scoring system rating the clinical, metabolic, imaging and other findings weighted by the age of onset. Our data are illustrated by foetal and neonatal videos. The patients were classified as having a mild (n = 4), moderate (n = 13) or severe (n = 14) disease phenotype. The most striking feature of the severe subtype was the neonatal absence of voluntary movements in combination with ventilator dependency and hyperexcitability. The foetal and neonatal presentation mirrored the course of disease with respect to survival (current median age 17.5 years in the mild group, median age of death 35 days in the severe group), severity and age of onset of all findings evaluated. CLPB deficiency should be considered in neonates with absence of voluntary movements, respiratory insufficiency and swallowing problems, especially if associated with 3-methylglutaconic aciduria, neutropenia and cataracts. Being an important differential diagnosis of hyperekplexia (exaggerated startle responses), we advise performing urinary organic acid analysis, blood cell counts and ophthalmological examination in these patients. The neonatal presentation of CLPB deficiency predicts the course of disease in later life, which is extremely important for counselling.


Asunto(s)
Catarata/metabolismo , Endopeptidasa Clp/deficiencia , Errores Innatos del Metabolismo/metabolismo , Neutropenia/metabolismo , Adolescente , Adulto , Atrofia/metabolismo , Encefalopatías , Niño , Preescolar , Femenino , Feto/metabolismo , Humanos , Hiperekplexia/metabolismo , Lactante , Recién Nacido , Masculino , Trastornos del Movimiento/metabolismo , Fenotipo , Adulto Joven
13.
J Am Soc Nephrol ; 27(2): 604-14, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26047794

RESUMEN

Idiopathic infantile hypercalcemia (IIH) is characterized by severe hypercalcemia with failure to thrive, vomiting, dehydration, and nephrocalcinosis. Recently, mutations in the vitamin D catabolizing enzyme 25-hydroxyvitamin D3-24-hydroxylase (CYP24A1) were described that lead to increased sensitivity to vitamin D due to accumulation of the active metabolite 1,25-(OH)2D3. In a subgroup of patients who presented in early infancy with renal phosphate wasting and symptomatic hypercalcemia, mutations in CYP24A1 were excluded. Four patients from families with parental consanguinity were subjected to homozygosity mapping that identified a second IIH gene locus on chromosome 5q35 with a maximum logarithm of odds (LOD) score of 6.79. The sequence analysis of the most promising candidate gene, SLC34A1 encoding renal sodium-phosphate cotransporter 2A (NaPi-IIa), revealed autosomal-recessive mutations in the four index cases and in 12 patients with sporadic IIH. Functional studies of mutant NaPi-IIa in Xenopus oocytes and opossum kidney (OK) cells demonstrated disturbed trafficking to the plasma membrane and loss of phosphate transport activity. Analysis of calcium and phosphate metabolism in Slc34a1-knockout mice highlighted the effect of phosphate depletion and fibroblast growth factor-23 suppression on the development of the IIH phenotype. The human and mice data together demonstrate that primary renal phosphate wasting caused by defective NaPi-IIa function induces inappropriate production of 1,25-(OH)2D3 with subsequent symptomatic hypercalcemia. Clinical and laboratory findings persist despite cessation of vitamin D prophylaxis but rapidly respond to phosphate supplementation. Therefore, early differentiation between SLC34A1 (NaPi-IIa) and CYP24A1 (24-hydroxylase) defects appears critical for targeted therapy in patients with IIH.


Asunto(s)
Hipercalcemia/genética , Enfermedades del Recién Nacido/genética , Errores Innatos del Metabolismo/genética , Mutación , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIa/genética , Proteínas Cotransportadoras de Sodio-Fosfato/genética , Animales , Genes Recesivos , Humanos , Lactante , Recién Nacido , Ratones , Ratones Noqueados
14.
Neurol Neurochir Pol ; 51(2): 184-189, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28169007

RESUMEN

INTRODUCTION: Migraine is a common neurological disorder characterized by a particular phenotype, complex pathophysiology and a heterogeneous genetic background. Among several heritable forms, familial hemiplegic migraine is the best described one. In the majority of cases it is caused by mutations in one of three different genes. CASE REPORT: Clinical symptoms of a 47 year old proband (and independently described in his 20 year old son) as well as differential diagnosis are discussed in the presented report. The most characteristic were recurrent attacks of blurred vision, paresthesias and hemiparesis often accompanied by speech disturbances and followed by severe headache with vomiting. Advanced morphological and genetic procedures were required to exclude MELAS, CADASIL and Call-Fleming syndrome. Finally, the definite diagnosis was possible after the application of the whole exome sequencing technique. It confirmed, for the first time in the Polish population, a heterozygous T666M mutation (c.1997C>T; p.Thr666Met) in the CACNA1A gene in the proband, the proband's son and in several other family members. CONCLUSION: The presented report provides clinical and genetic insight into familial hemiplegic migraine 1 resulting from a mutation in the CACNA1A gene.


Asunto(s)
Canales de Calcio/genética , Análisis Mutacional de ADN , Migraña con Aura/genética , Encéfalo/patología , Diagnóstico Diferencial , Tamización de Portadores Genéticos , Estudio de Asociación del Genoma Completo , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Migraña con Aura/diagnóstico , Linaje , Polonia , Adulto Joven
15.
J Transl Med ; 14(1): 174, 2016 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-27290639

RESUMEN

BACKGROUND: Whole-exome sequencing (WES) has led to an exponential increase in identification of causative variants in mitochondrial disorders (MD). METHODS: We performed WES in 113 MD suspected patients from Polish paediatric reference centre, in whom routine testing failed to identify a molecular defect. WES was performed using TruSeqExome enrichment, followed by variant prioritization, validation by Sanger sequencing, and segregation with the disease phenotype in the family. RESULTS: Likely causative mutations were identified in 67 (59.3 %) patients; these included variants in mtDNA (6 patients) and nDNA: X-linked (9 patients), autosomal dominant (5 patients), and autosomal recessive (47 patients, 11 homozygotes). Novel variants accounted for 50.5 % (50/99) of all detected changes. In 47 patients, changes in 31 MD-related genes (ACAD9, ADCK3, AIFM1, CLPB, COX10, DLD, EARS2, FBXL4, MTATP6, MTFMT, MTND1, MTND3, MTND5, NAXE, NDUFS6, NDUFS7, NDUFV1, OPA1, PARS2, PC, PDHA1, POLG, RARS2, RRM2B, SCO2, SERAC1, SLC19A3, SLC25A12, TAZ, TMEM126B, VARS2) were identified. The ACAD9, CLPB, FBXL4, PDHA1 genes recurred more than twice suggesting higher general/ethnic prevalence. In 19 cases, variants in 18 non-MD related genes (ADAR, CACNA1A, CDKL5, CLN3, CPS1, DMD, DYSF, GBE1, GFAP, HSD17B4, MECP2, MYBPC3, PEX5, PGAP2, PIGN, PRF1, SBDS, SCN2A) were found. The percentage of positive WES results rose gradually with increasing probability of MD according to the Mitochondrial Disease Criteria (MDC) scale (from 36 to 90 % for low and high probability, respectively). The percentage of detected MD-related genes compared with non MD-related genes also grew with the increasing MD likelihood (from 20 to 97 %). Molecular diagnosis was established in 30/47 (63.8 %) neonates and in 17/28 (60.7 %) patients with basal ganglia involvement. Mutations in CLPB, SERAC1, TAZ genes were identified in neonates with 3-methylglutaconic aciduria (3-MGA) as a discriminative feature. New MD-related candidate gene (NDUFB8) is under verification. CONCLUSIONS: We suggest WES rather than targeted NGS as the method of choice in diagnostics of MD in children, including neonates with 3-MGA aciduria, who died without determination of disease cause and with limited availability of laboratory data. There is a strong correlation between the degree of MD diagnosis by WES and MD likelihood expressed by the MDC scale.


Asunto(s)
Exoma/genética , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/genética , Pediatría , Análisis de Secuencia de ADN/métodos , Biopsia , Niño , Preescolar , ADN Mitocondrial/genética , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Errores Innatos del Metabolismo/genética , Músculos/patología , Mutación/genética , Linaje
16.
Adv Exp Med Biol ; 878: 73-82, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26453071

RESUMEN

Metabolites of cerebrospinal biogenic amines (dopamine and serotonin)are an important tool in clinical research and diagnosis of children with neurotransmitter disorders. In this article we focused on finding relationships between the concentration of biogenic amine metabolites, age, and gender. We analyzed 148 samples from children with drug resistant seizures of unknown etiology and children with mild stable encephalopathy aged 0-18 years. A normal profile of biogenic amineswas found in 107 children and those children were enrolled to the study group. The CSF samples were analyzed by HPLC with an electrochemical detector. The concentrations of the dopamine and serotonin metabolites homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA), respectively, were high at birth, gradually decreasing afterward until the 18 years of age. Nevertheless, the HVA/5-HIAA ratio did not vary with age, except in the children below 1 year of age. In the youngest group we observed a strong relationship between the HVA/5-HIAA ratio and age (r = 0.69, p < 0.001). There were no statistical differences in the level of both dopamine and serotonin metabolites between boys and girls, although a tread toward lower HVA and 5-HIAA in the boys was noticeable. Significant inter-gender differences in the level of HVA and 5-HIAA were noted only in the age-group of 1-4 years, with 5-HIAA being higher in the girls than boys (p = 0.004). In conclusion, the study revealed that the concentration of biogenic amine metabolites is age and sex dependent.


Asunto(s)
Dopamina/líquido cefalorraquídeo , Convulsiones/líquido cefalorraquídeo , Serotonina/líquido cefalorraquídeo , Adolescente , Factores de Edad , Estudios de Casos y Controles , Niño , Preescolar , Femenino , Ácido Homovanílico/líquido cefalorraquídeo , Humanos , Ácido Hidroxiindolacético/líquido cefalorraquídeo , Lactante , Masculino , Factores Sexuales
17.
Hum Genet ; 134(9): 951-66, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26077851

RESUMEN

Replication of the mitochondrial genome depends on the single DNA polymerase (pol gamma). Mutations in the POLG gene, encoding the catalytic subunit of the human polymerase gamma, have been linked to a wide variety of mitochondrial disorders that show remarkable heterogeneity, with more than 200 sequence variants, often very rare, found in patients. The pathogenicity and dominance status of many such mutations remain, however, unclear. Remarkable structural and functional conservation of human POLG and its S. cerevisiae ortholog (Mip1p) led to the development of many successful yeast models, enabling to study the phenotype of putative pathogenic mutations. In a group of patients with suspicion of mitochondrial pathology, we identified five novel POLG sequence variants, four of which (p.Arg869Ter, p.Gln968Glu, p.Thr1053Argfs*6, and p.Val1106Ala), together with one previously known but uncharacterised variant (p.Arg309Cys), were amenable to modelling in yeast. Familial analysis indicated causal relationship of these variants with disease, consistent with autosomal recessive inheritance. To investigate the effect of these sequence changes on mtDNA replication, we obtained the corresponding yeast mip1 alleles (Arg265Cys, Arg672Ter, Arg770Glu, Thr809Ter, and Val863Ala, respectively) and tested their effect on mitochondrial genome stability and replication fidelity. For three of them (Arg265Cys, Arg672Ter, and Thr809Ter), we observed a strong, partially dominant phenotype of a complete loss of functional mtDNA, whereas the remaining two led to partial mtDNA depletion and significant increase in point mutation frequencies. These results show good correlation with the severity of symptoms observed in patients and allow to establish these variants as pathogenic mutations.


Asunto(s)
Replicación del ADN , ADN Mitocondrial/genética , ADN Polimerasa Dirigida por ADN/genética , Mitocondrias/genética , Enfermedades Mitocondriales/genética , Saccharomyces cerevisiae/genética , Adolescente , Alelos , Secuencia de Aminoácidos , Preescolar , Clonación Molecular , ADN Polimerasa I/genética , ADN Polimerasa I/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Mitocondrias/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Linaje , Fenotipo , Mutación Puntual , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
Neuropediatrics ; 46(2): 98-103, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25642805

RESUMEN

Pediatric movement disorders are still a diagnostic challenge, as many patients remain without a (genetic) diagnosis. Magnetic resonance imaging (MRI) pattern recognition can lead to the diagnosis. MEGDEL syndrome (3-MethylGlutaconic aciduria, Deafness, Encephalopathy, Leigh-like syndrome MIM #614739) is a clinically and biochemically highly distinctive dystonia deafness syndrome accompanied by 3-methylglutaconic aciduria, severe developmental delay, and progressive spasticity. Mutations are found in SERAC1, encoding a phosphatidylglycerol remodeling enzyme essential for both mitochondrial function and intracellular cholesterol trafficking. Based on the homogenous phenotype, we hypothesized an accordingly characteristic MRI pattern. A total of 43 complete MRI studies of 30 patients were systematically reevaluated. All patients presented a distinctive brain MRI pattern with five characteristic disease stages affecting the basal ganglia, especially the putamen. In stage 1, T2 signal changes of the pallidum are present. In stage 2, swelling of the putamen and caudate nucleus is seen. The dorsal putamen contains an "eye" that shows no signal alteration and (thus) seems to be spared during this stage of the disease. It later increases, reflecting progressive putaminal involvement. This "eye" was found in all patients with MEGDEL syndrome during a specific age range, and has not been reported in other disorders, making it pathognomonic for MEDGEL and allowing diagnosis based on MRI findings.


Asunto(s)
Ganglios Basales/patología , Sordera/patología , Trastornos Distónicos/patología , Enfermedades Mitocondriales/patología , Preescolar , Sordera/complicaciones , Sordera/genética , Progresión de la Enfermedad , Trastornos Distónicos/complicaciones , Trastornos Distónicos/genética , Humanos , Lactante , Imagen por Resonancia Magnética , Enfermedades Mitocondriales/complicaciones , Putamen/patología , Síndrome
19.
Biochim Biophys Acta ; 1822(7): 1114-24, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22465034

RESUMEN

The loss of Surf1 protein leads to a severe COX deficiency manifested as a fatal neurodegenerative disorder, the Leigh syndrome (LS(COX)). Surf1 appears to be involved in the early step of COX assembly but its function remains unknown. The aim of the study was to find out how SURF1 gene mutations influence expression of OXPHOS and other pro-mitochondrial genes and to further characterize the altered COX assembly. Analysis of fibroblast cell lines from 9 patients with SURF1 mutations revealed a 70% decrease of the COX complex content to be associated with 32-54% upregulation of respiratory chain complexes I, III and V and accumulation of Cox5a subunit. Whole genome expression profiling showed a general decrease of transcriptional activity in LS(COX) cells and indicated that the adaptive changes in OXPHOS complexes are due to a posttranscriptional compensatory mechanism. Electrophoretic and WB analysis showed that in mitochondria of LS(COX) cells compared to controls, the assembled COX is present entirely in a supercomplex form, as I-III2-IV supercomplex but not as larger supercomplexes. The lack of COX also caused an accumulation of I-III2 supercomplex. The accumulated Cox5a was mainly present as a free subunit. We have found out that the major COX assembly subcomplexes accumulated due to SURF1 mutations range in size between approximately 85-140kDa. In addition to the originally proposed S2 intermediate they might also represent Cox1-containing complexes lacking other COX subunits. Unlike the assembled COX, subcomplexes are unable to associate with complexes I and III.


Asunto(s)
Deficiencia de Citocromo-c Oxidasa/genética , Complejo IV de Transporte de Electrones/genética , Transporte de Electrón/fisiología , Enfermedad de Leigh/genética , Proteínas de la Membrana/genética , Proteínas Mitocondriales/genética , Mutación/genética , Extractos Celulares , Línea Celular , Ciclooxigenasa 1/genética , Ciclooxigenasa 1/metabolismo , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Deficiencia de Citocromo-c Oxidasa/metabolismo , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Complejo III de Transporte de Electrones/genética , Complejo III de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Enfermedad de Leigh/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Fosforilación Oxidativa , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo
20.
J Inherit Metab Dis ; 36(6): 929-37, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23361305

RESUMEN

Barth syndrome (BTHS) is an X-linked mitochondrial defect characterised by dilated cardiomyopathy, neutropaenia and 3-methylglutaconic aciduria (3-MGCA). We report on two affected brothers with c.646G > A (p.G216R) TAZ gene mutations. The pathogenicity of the mutation, as indicated by the structure-based functional analyses, was further confirmed by abnormal monolysocardiolipin/cardiolipin ratio in dry blood spots of the patients as well as the occurrence of this mutation in another reported BTHS proband. In both brothers, 2D-echocardiography revealed some features of left ventricular noncompaction (LVNC) despite marked differences in the course of the disease; the eldest child presented with isolated cardiomyopathy from late infancy, whereas the youngest showed severe lactic acidosis without 3-MGCA during the neonatal period. An examination of the patients' fibroblast cultures revealed that extremely low mitochondrial membrane potentials (mtΔΨ about 50 % of the control value) dominated other unspecific mitochondrial changes detected (respiratory chain dysfunction, abnormal ROS production and depressed antioxidant defense). 1) Our studies confirm generalised mitochondrial dysfunction in the skeletal muscle and the fibroblasts of BTHS patients, especially a severe impairment in the mtΔΨ and the inhibition of complex V activity. It can be hypothesised that impaired mtΔΨ and mitochondrial ATP synthase activity may contribute to episodes of cardiac arrhythmia that occurred unexpectedly in BTHS patients. 2) Severe lactic acidosis without 3-methylglutaconic aciduria in male neonates as well as an asymptomatic mild left ventricular noncompaction may characterise the ranges of natural history of Barth syndrome.


Asunto(s)
Síndrome de Barth/complicaciones , Síndrome de Barth/fisiopatología , Potencial de la Membrana Mitocondrial , Síndrome de Barth/diagnóstico , Síndrome de Barth/etiología , Células Cultivadas , Niño , Preescolar , Humanos , Masculino , Músculo Esquelético/patología , Hermanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA