Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
PLoS Biol ; 8(4): e1000354, 2010 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-20404999

RESUMEN

The cysteine desulfurase IscS is a highly conserved master enzyme initiating sulfur transfer via persulfide to a range of acceptor proteins involved in Fe-S cluster assembly, tRNA modifications, and sulfur-containing cofactor biosynthesis. Several IscS-interacting partners including IscU, a scaffold for Fe-S cluster assembly; TusA, the first member of a sulfur relay leading to sulfur incorporation into the wobble uridine of several tRNAs; ThiI, involved in tRNA modification and thiamine biosynthesis; and rhodanese RhdA are sulfur acceptors. Other proteins, such as CyaY/frataxin and IscX, also bind to IscS, but their functional roles are not directly related to sulfur transfer. We have determined the crystal structures of IscS-IscU and IscS-TusA complexes providing the first insight into their different modes of binding and the mechanism of sulfur transfer. Exhaustive mutational analysis of the IscS surface allowed us to map the binding sites of various partner proteins and to determine the functional and biochemical role of selected IscS and TusA residues. IscS interacts with its partners through an extensive surface area centered on the active site Cys328. The structures indicate that the acceptor proteins approach Cys328 from different directions and suggest that the conformational plasticity of a long loop containing this cysteine is essential for the ability of IscS to transfer sulfur to multiple acceptor proteins. The sulfur acceptors can only bind to IscS one at a time, while frataxin and IscX can form a ternary complex with IscU and IscS. Our data support the role of frataxin as an iron donor for IscU to form the Fe-S clusters.


Asunto(s)
Liasas de Carbono-Azufre/metabolismo , Proteínas de Escherichia coli/química , Proteínas Hierro-Azufre/química , Conformación Proteica , ARN de Transferencia/química , Compuestos de Sulfhidrilo/química , Liasas de Carbono-Azufre/química , Liasas de Carbono-Azufre/genética , Dominio Catalítico , Cristalografía por Rayos X , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , ARN de Transferencia/metabolismo , Azufre/química , Azufre/metabolismo
2.
J Biol Chem ; 284(31): 20989-1000, 2009 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-19483088

RESUMEN

Flagella of the bacteria Helicobacter pylori and Campylobacter jejuni are important virulence determinants, whose proper assembly and function are dependent upon glycosylation at multiple positions by sialic acid-like sugars, such as 5,7-diacetamido-3,5,7,9-tetradeoxy-l-glycero-l-manno-nonulosonic acid (pseudaminic acid (Pse)). The fourth enzymatic step in the pseudaminic acid pathway, the hydrolysis of UDP-2,4-diacetamido-2,4,6-trideoxy-beta-l-altropyranose to generate 2,4-diacetamido-2,4,6-trideoxy-l-altropyranose, is performed by the nucleotide sugar hydrolase PseG. To better understand the molecular basis of the PseG catalytic reaction, we have determined the crystal structures of C. jejuni PseG in apo-form and as a complex with its UDP product at 1.8 and 1.85 A resolution, respectively. In addition, molecular modeling was utilized to provide insight into the structure of the PseG-substrate complex. This modeling identifies a His(17)-coordinated water molecule as the putative nucleophile and suggests the UDP-sugar substrate adopts a twist-boat conformation upon binding to PseG, enhancing the exposure of the anomeric bond cleaved and favoring inversion at C-1. Furthermore, based on these structures a series of amino acid substitution derivatives were constructed, altering residues within the active site, and each was kinetically characterized to examine its contribution to PseG catalysis. In conjunction with structural comparisons, the almost complete inactivation of the PseG H17F and H17L derivatives suggests that His(17) functions as an active site base, thereby activating the nucleophilic water molecule for attack of the anomeric C-O bond of the UDP-sugar. As the PseG structure reveals similarity to those of glycosyltransferase family-28 members, in particular that of Escherichia coli MurG, these findings may also be of relevance for the mechanistic understanding of this important enzyme family.


Asunto(s)
Vías Biosintéticas , Campylobacter jejuni/enzimología , Monoéster Fosfórico Hidrolasas/química , Monoéster Fosfórico Hidrolasas/metabolismo , Azúcares Ácidos/metabolismo , Azúcares de Uridina Difosfato/metabolismo , Proteínas de la Membrana Bacteriana Externa/química , Sitios de Unión , Biocatálisis , Simulación por Computador , Cristalografía por Rayos X , Helicobacter pylori/enzimología , Cinética , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , N-Acetilglucosaminiltransferasas/química , Estructura Secundaria de Proteína , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad
3.
J Bacteriol ; 191(24): 7614-9, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19801413

RESUMEN

The MnmE-MnmG complex is involved in tRNA modification. We have determined the crystal structure of Escherichia coli MnmG at 2.4-A resolution, mutated highly conserved residues with putative roles in flavin adenine dinucleotide (FAD) or tRNA binding and MnmE interaction, and analyzed the effects of these mutations in vivo and in vitro. Limited trypsinolysis of MnmG suggests significant conformational changes upon FAD binding.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , ARN de Transferencia/metabolismo , Regulación Alostérica , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Proteínas de Escherichia coli/genética , Flavina-Adenina Dinucleótido/metabolismo , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Tripsina/metabolismo
4.
Proteins ; 75(3): 598-609, 2009 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-19004000

RESUMEN

Periplasmic binding proteins (PBPs) are essential components of bacterial transport systems, necessary for bacterial growth and survival. The two-domain structures of PBPs are topologically classified into three groups based on the number of crossovers or hinges between the globular domains: group I PBPs have three connections, group II have two, and group III have only one. Although a large number of structures for group I or II PBPs are known, fewer group III PBPs have been structurally characterized. Group I and II PBPs exhibit significant domain motions during transition from the unbound to ligand-bound form, however, no large conformational changes have been observed to date in group III PBPs. We have solved the crystal structure of a periplasmic binding protein FitE, part of an iron transport system, fit, recently identified in a clinical E. coli isolate. The structure, determined at 1.8 A resolution, shows that FitE is a group III PBP containing a single alpha-helix bridging the two domains. Among the individual FitE molecules present in two crystal forms we observed three different conformations (open, closed, intermediate). Our crystallographic and molecular dynamics results strongly support the notion that group III PBPs also adopt the same Venus flytrap mechanism as do groups I and II PBPs. Unlike other group III PBPs, FitE forms dimers both in solution and in the crystals. The putative siderophore binding pocket is lined with arginine residues, suggesting an anionic nature of the iron-containing siderophore.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Proteínas de Escherichia coli/química , Proteínas de Unión Periplasmáticas/química , Conformación Proteica , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Sitios de Unión , Simulación por Computador , Cristalografía por Rayos X , Dimerización , Electroforesis en Gel de Poliacrilamida , Escherichia coli O157/química , Escherichia coli O157/genética , Escherichia coli O157/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Proteínas de Unión Periplasmáticas/genética , Proteínas de Unión Periplasmáticas/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Espectrometría de Masa por Ionización de Electrospray
5.
J Bacteriol ; 190(4): 1447-58, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18065529

RESUMEN

Hydrogenases are enzymes involved in hydrogen metabolism, utilizing H2 as an electron source. [NiFe] hydrogenases are heterodimeric Fe-S proteins, with a large subunit containing the reaction center involving Fe and Ni metal ions and a small subunit containing one or more Fe-S clusters. Maturation of the [NiFe] hydrogenase involves assembly of nonproteinaceous ligands on the large subunit by accessory proteins encoded by the hyp operon. HypE is an essential accessory protein and participates in the synthesis of two cyano groups found in the large subunit. We report the crystal structure of Escherichia coli HypE at 2.0-A resolution. HypE exhibits a fold similar to that of PurM and ThiL and forms dimers. The C-terminal catalytically essential Cys336 is internalized at the dimer interface between the N- and C-terminal domains. A mechanism for dehydration of the thiocarbamate to the thiocyanate is proposed, involving Asp83 and Glu272. The interactions of HypE and HypF were characterized in detail by surface plasmon resonance and isothermal titration calorimetry, revealing a Kd (dissociation constant) of approximately 400 nM. The stoichiometry and molecular weights of the complex were verified by size exclusion chromatography and gel scanning densitometry. These experiments reveal that HypE and HypF associate to form a stoichiometric, hetero-oligomeric complex predominantly consisting of a [EF]2 heterotetramer which exists in a dynamic equilibrium with the EF heterodimer. The surface plasmon resonance results indicate that a conformational change occurs upon heterodimerization which facilitates formation of a productive complex as part of the carbamate transfer reaction.


Asunto(s)
Proteínas Bacterianas/química , Transferasas de Carboxilo y Carbamoilo/química , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Calorimetría , Transferasas de Carboxilo y Carbamoilo/genética , Transferasas de Carboxilo y Carbamoilo/metabolismo , Cristalografía por Rayos X , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Modelos Biológicos , Modelos Moleculares , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Resonancia por Plasmón de Superficie
6.
J Mol Biol ; 346(4): 1163-72, 2005 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-15701524

RESUMEN

The human protein p54nrb and its mouse homolog NonO have been implicated in a variety of nuclear processes including transcription, pre-mRNA processing, nuclear retention of edited RNA and DNA relaxation. We have identified p54nrb as an antigen of the phosphodependent monoclonal antibodies CC-3 and MPM-2 and shown that this protein is phosphorylated on multiple sites during mitosis. The use of the cyclin-dependent protein kinase inhibitor roscovitine and immunodepletion studies with an anti-cyclin B1 antibody established that Cdk1 was responsible for the phosphorylation of the carboxy-terminal extremity of p54nrb whereas a different kinase appeared to be involved in the generation of CC-3 epitope(s) in the amino-terminal moiety of the protein. Like many CC-3 and MPM-2 antigens, we show that p54nrb is a target of the peptidylprolyl isomerase Pin1, suggesting that it may be regulated by phosphorylation-dependent conformational changes as many other nuclear proteins upon entry into mitosis. In addition, site-directed mutagenesis indicated that the interaction of Pin1 with p54nrb was mediated by three threonine residues located in the proline-rich carboxy-terminal extremity of the protein. Our results also showed that Pin1 binding was favored when at least two of the three threonine residues were phosphorylated, suggesting a regulation mechanism based on multisite phosphorylation.


Asunto(s)
Mitosis , Proteínas Asociadas a Matriz Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Isomerasa de Peptidilprolil/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Proteína Quinasa CDC2/metabolismo , Epítopos/inmunología , Células HeLa , Humanos , Ratones , Peptidilprolil Isomerasa de Interacción con NIMA , Proteínas Asociadas a Matriz Nuclear/genética , Proteínas Nucleares/genética , Fosforilación , Unión Proteica , Proteínas Serina-Treonina Quinasas/inmunología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Unión al ARN/genética , Especificidad por Sustrato
7.
Cell Rep ; 12(9): 1508-18, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26299973

RESUMEN

Intracellular bacterial pathogens of a diverse nature share the ability to evade host immunity by impairing trafficking of endocytic cargo to lysosomes for degradation, a process that is poorly understood. Here, we show that the Salmonella enterica type 3 secreted effector SopD2 mediates this process by binding the host regulatory GTPase Rab7 and inhibiting its nucleotide exchange. Consequently, this limits Rab7 interaction with its dynein- and kinesin-binding effectors RILP and FYCO1 and thereby disrupts host-driven regulation of microtubule motors. Our study identifies a bacterial effector capable of directly binding and thereby modulating Rab7 activity and a mechanism of endocytic trafficking disruption that may provide insight into the pathogenesis of other bacteria. Additionally, we provide a powerful tool for the study of Rab7 function, and a potential therapeutic target.


Asunto(s)
Proteínas Bacterianas/metabolismo , Endosomas/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/química , Proteínas de Unión al ADN/metabolismo , Endosomas/microbiología , Células HEK293 , Células HeLa , Humanos , Ratones , Proteínas Asociadas a Microtúbulos , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Salmonella enterica/metabolismo , Salmonella enterica/patogenicidad , Factores de Transcripción/metabolismo , Proteínas de Unión a GTP rab7
8.
Protein Sci ; 20(7): 1208-19, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21557376

RESUMEN

There is a high prevalence of sialic acid in a number of different organisms, resulting in there being a myriad of different enzymes that can exploit it as a fermentable carbon source. One such enzyme is NanS, a carbohydrate esterase that we show here deacetylates the 9 position of 9-O-sialic acid so that it can be readily transported into the cell for catabolism. Through structural studies, we show that NanS adopts a SGNH hydrolase fold. Although the backbone of the structure is similar to previously characterized family members, sequence comparisons indicate that this family can be further subdivided into two subfamilies with somewhat different fingerprints. NanS is the founding member of group II. Its catalytic center contains Ser19 and His301 but no Asp/Glu is present to form the classical catalytic triad. The contribution of Ser19 and His301 to catalysis was confirmed by mutagenesis. In addition to structural characterization, we have mapped the specificity of NanS using a battery of substrates.


Asunto(s)
Acetilesterasa/química , Acetilesterasa/metabolismo , Escherichia coli O157/enzimología , Ácidos Siálicos/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , Escherichia coli O157/química , Escherichia coli O157/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Alineación de Secuencia
9.
Curr Protoc Protein Sci ; Chapter 17: 17.10.1-17.10.9, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20814929

RESUMEN

Success in determining the three-dimensional structure of a macromolecule by X-ray diffraction methods depends critically on the ability to obtain well ordered crystals of the macromolecule in question. Predisposition to crystallization correlates with the homogeneity of the molecules in solution. Dynamic light scattering (DLS) is particularly well suited for evaluating protein homogeneity under multiple conditions and at concentrations commensurate with crystallization conditions. This unit presents a typical protocol for DLS measurements of a protein sample, and describes approaches to improve protein homogeneity in solution.


Asunto(s)
Cristalización/métodos , Proteínas/química , Cristalografía por Rayos X , Luz , Dispersión de Radiación
10.
Chem Biol ; 16(4): 401-10, 2009 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-19389626

RESUMEN

There is a considerable interest in the modification of existing antibiotics to generate new antimicrobials. Glycopeptide antibiotics (GPAs) are effective against serious Gram-positive bacterial pathogens including methicillin-resistant Staphylococcus aureus. However, resistance to these antibiotics is becoming a serious problem requiring new strategies. We show that the Amycolatopsis orientalis (S)-adenosyl-L-methionine-dependent methyltransferase MtfA, from the vancomycin-class GPA chloroeremomycin biosynthetic pathway, catalyzes in vivo and in vitro methyl transfer to generate methylated GPA derivatives of the teicoplanin class. The crystal structure of MtfA complexed with (S)-adenosyl-L-methionine, (S)-adenosylhomocysteine, or sinefungin inhibitor, coupled with mutagenesis, identified His228 as a likely general base required for methyl transfer to the N terminus of the glycopeptide. Computational docking and molecular dynamics simulations were used to model binding of demethyl-vancomycin aglycone to MtfA. These results demonstrate its utility as a tool for engineering methylated analogs of GPAs.


Asunto(s)
Actinomycetales/enzimología , Antibacterianos/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Metiltransferasas/química , Metiltransferasas/metabolismo , Adenosina/análogos & derivados , Adenosina/química , Adenosina/metabolismo , Antibacterianos/química , Proteínas Bacterianas/genética , Dominio Catalítico , Cristalografía por Rayos X , Metiltransferasas/genética , Modelos Moleculares , Mutación Puntual , Unión Proteica , Multimerización de Proteína , S-Adenosilhomocisteína/química , S-Adenosilhomocisteína/metabolismo , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo , Teicoplanina/metabolismo
11.
Biochemistry ; 47(7): 1827-36, 2008 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-18198901

RESUMEN

Campylobacter jejuni is highly unusual among bacteria in forming N-linked glycoproteins. The heptasaccharide produced by its pgl system is attached to protein Asn through its terminal 2,4-diacetamido-2,4,6-trideoxy-d-Glc (QuiNAc4NAc or N,N'-diacetylbacillosamine) moiety. The crucial, last part of this sugar's synthesis is the acetylation of UDP-2-acetamido-4-amino-2,4,6-trideoxy-d-Glc by the enzyme PglD, with acetyl-CoA as a cosubstrate. We have determined the crystal structures of PglD in CoA-bound and unbound forms, refined to 1.8 and 1.75 A resolution, respectively. PglD is a trimer of subunits each comprised of two domains, an N-terminal alpha/beta-domain and a C-terminal left-handed beta-helix. Few structural differences accompany CoA binding, except in the C-terminal region following the beta-helix (residues 189-195), which adopts an extended structure in the unbound form and folds to extend the beta-helix upon binding CoA. Computational molecular docking suggests a different mode of nucleotide-sugar binding with respect to the acetyl-CoA donor, with the molecules arranged in an "L-shape", compared with the "in-line" orientation in related enzymes. Modeling indicates that the oxyanion intermediate would be stabilized by the NH group of Gly143', with His125' the most likely residue to function as a general base, removing H+ from the amino group prior to nucleophilic attack at the carbonyl carbon of acetyl-CoA. Site-specific mutations of active site residues confirmed the importance of His125', Glu124', and Asn118. We conclude that Asn118 exerts its function by stabilizing the intricate hydrogen bonding network within the active site and that Glu124' may function to increase the pKa of the putative general base, His125'.


Asunto(s)
Acetiltransferasas/metabolismo , Campylobacter jejuni/metabolismo , Hexosaminas/metabolismo , Polisacáridos/biosíntesis , Acetiltransferasas/química , Sitios de Unión , Campylobacter jejuni/enzimología , Modelos Moleculares , Conformación Proteica
12.
Nat Struct Mol Biol ; 15(2): 130-8, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18204465

RESUMEN

The chain length distribution of complex polysaccharides present on the bacterial surface is determined by polysaccharide co-polymerases (PCPs) anchored in the inner membrane. We report crystal structures of the periplasmic domains of three PCPs that impart substantially different chain length distributions to surface polysaccharides. Despite very low sequence similarities, they have a common protomer structure with a long central alpha-helix extending 100 A into the periplasm. The protomers self-assemble into bell-shaped oligomers of variable sizes, with a large internal cavity. Electron microscopy shows that one of the full-length PCPs has a similar organization as that observed in the crystal for its periplasmic domain alone. Functional studies suggest that the top of the PCP oligomers is an important region for determining polysaccharide modal length. These structures provide a detailed view of components of the bacterial polysaccharide assembly machinery.


Asunto(s)
Proteínas Bacterianas/química , Escherichia coli O157/enzimología , Proteínas de Escherichia coli/química , Salmonella typhimurium/enzimología , Sustitución de Aminoácidos/genética , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Escherichia coli O157/química , Proteínas de Escherichia coli/genética , Microscopía Electrónica de Transmisión , Modelos Moleculares , Polisacáridos Bacterianos/biosíntesis , Conformación Proteica , Salmonella typhimurium/química , Eliminación de Secuencia
13.
J Biol Chem ; 281(49): 37930-41, 2006 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-16966333

RESUMEN

HisB from Escherichia coli is a bifunctional enzyme catalyzing the sixth and eighth steps of l-histidine biosynthesis. The N-terminal domain (HisB-N) possesses histidinol phosphate phosphatase activity, and its crystal structure shows a single domain with fold similarity to the haloacid dehalogenase (HAD) enzyme family. HisB-N forms dimers in the crystal and in solution. The structure shows the presence of a structural Zn(2+) ion stabilizing the conformation of an extended loop. Two metal binding sites were also identified in the active site. Their presence was further confirmed by isothermal titration calorimetry. HisB-N is active in the presence of Mg(2+), Mn(2+), Co(2+), or Zn(2+), but Ca(2+) has an inhibitory effect. We have determined structures of several intermediate states corresponding to snapshots along the reaction pathway, including that of the phosphoaspartate intermediate. A catalytic mechanism, different from that described for other HAD enzymes, is proposed requiring the presence of the second metal ion not found in the active sites of previously characterized HAD enzymes, to complete the second half-reaction. The proposed mechanism is reminiscent of two-Mg(2+) ion catalysis utilized by DNA and RNA polymerases and many nucleases. The structure also provides an explanation for the inhibitory effect of Ca(2+).


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Histidinol-Fosfatasa/química , Histidinol-Fosfatasa/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Dominio Catalítico , Cationes Bivalentes/metabolismo , Cristalografía por Rayos X , Dimerización , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Histidinol-Fosfatasa/genética , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Conformación Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Electricidad Estática , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA