Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ESC Heart Fail ; 8(4): 2698-2712, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33991175

RESUMEN

AIMS: Skeletal muscle (SkM) abnormalities may impact exercise capacity in patients with heart failure with preserved ejection fraction (HFpEF). We sought to quantify differences in SkM oxidative phosphorylation capacity (OxPhos), fibre composition, and the SkM proteome between HFpEF, hypertensive (HTN), and healthy participants. METHODS AND RESULTS: Fifty-nine subjects (20 healthy, 19 HTN, and 20 HFpEF) performed a maximal-effort cardiopulmonary exercise test to define peak oxygen consumption (VO2, peak ), ventilatory threshold (VT), and VO2 efficiency (ratio of total work performed to O2 consumed). SkM OxPhos was assessed using Creatine Chemical-Exchange Saturation Transfer (CrCEST, n = 51), which quantifies unphosphorylated Cr, before and after plantar flexion exercise. The half-time of Cr recovery (t1/2, Cr ) was taken as a metric of in vivo SkM OxPhos. In a subset of subjects (healthy = 13, HTN = 9, and HFpEF = 12), percutaneous biopsy of the vastus lateralis was performed for myofibre typing, mitochondrial morphology, and proteomic and phosphoproteomic analysis. HFpEF subjects demonstrated lower VO2,peak , VT, and VO2 efficiency than either control group (all P < 0.05). The t1/2, Cr was significantly longer in HFpEF (P = 0.005), indicative of impaired SkM OxPhos, and correlated with cycle ergometry exercise parameters. HFpEF SkM contained fewer Type I myofibres (P = 0.003). Proteomic analyses demonstrated (a) reduced levels of proteins related to OxPhos that correlated with exercise capacity and (b) reduced ERK signalling in HFpEF. CONCLUSIONS: Heart failure with preserved ejection fraction patients demonstrate impaired functional capacity and SkM OxPhos. Reductions in the proportions of Type I myofibres, proteins required for OxPhos, and altered phosphorylation signalling in the SkM may contribute to exercise intolerance in HFpEF.


Asunto(s)
Insuficiencia Cardíaca , Tolerancia al Ejercicio , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/metabolismo , Humanos , Músculo Esquelético/metabolismo , Consumo de Oxígeno , Proteómica , Volumen Sistólico
2.
JACC Basic Transl Sci ; 5(3): 211-225, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32215346

RESUMEN

The aim of this study was to determine the arteriovenous oxygen content difference (ΔAVo2) in adult subjects with and without heart failure with preserved ejection fraction (HFpEF) during systemic and forearm exercise. Subjects with HFpEF had reduced ΔAVo2. Forearm diffusional conductance for oxygen, a lumped conductance parameter that incorporates all impediments to the movement of oxygen from red blood cells in skeletal muscle capillaries into the mitochondria within myocytes, was estimated. Forearm diffusional conductance for oxygen was not different among adults with HFpEF, those with hypertension, and healthy control subjects; therefore, diffusional conductance cannot explain the reduced forearm ΔAVo2. Instead, adiposity was strongly associated with ΔAVo2, suggesting an active role for adipose tissue in reducing exercise capacity in patients with HFpEF.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA