Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Cell ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38851188

RESUMEN

Mitochondrial dynamics play a critical role in cell fate decisions and in controlling mtDNA levels and distribution. However, the molecular mechanisms linking mitochondrial membrane remodeling and quality control to mtDNA copy number (CN) regulation remain elusive. Here, we demonstrate that the inner mitochondrial membrane (IMM) protein mitochondrial fission process 1 (MTFP1) negatively regulates IMM fusion. Moreover, manipulation of mitochondrial fusion through the regulation of MTFP1 levels results in mtDNA CN modulation. Mechanistically, we found that MTFP1 inhibits mitochondrial fusion to isolate and exclude damaged IMM subdomains from the rest of the network. Subsequently, peripheral fission ensures their segregation into small MTFP1-enriched mitochondria (SMEM) that are targeted for degradation in an autophagic-dependent manner. Remarkably, MTFP1-dependent IMM quality control is essential for basal nucleoid recycling and therefore to maintain adequate mtDNA levels within the cell.

2.
Nature ; 615(7952): 499-506, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36890229

RESUMEN

Mutations in fumarate hydratase (FH) cause hereditary leiomyomatosis and renal cell carcinoma1. Loss of FH in the kidney elicits several oncogenic signalling cascades through the accumulation of the oncometabolite fumarate2. However, although the long-term consequences of FH loss have been described, the acute response has not so far been investigated. Here we generated an inducible mouse model to study the chronology of FH loss in the kidney. We show that loss of FH leads to early alterations of mitochondrial morphology and the release of mitochondrial DNA (mtDNA) into the cytosol, where it triggers the activation of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING)-TANK-binding kinase 1 (TBK1) pathway and stimulates an inflammatory response that is also partially dependent on retinoic-acid-inducible gene I (RIG-I). Mechanistically, we show that this phenotype is mediated by fumarate and occurs selectively through mitochondrial-derived vesicles in a manner that depends on sorting nexin 9 (SNX9). These results reveal that increased levels of intracellular fumarate induce a remodelling of the mitochondrial network and the generation of mitochondrial-derived vesicles, which allows the release of mtDNAin the cytosol and subsequent activation of the innate immune response.


Asunto(s)
ADN Mitocondrial , Fumaratos , Inmunidad Innata , Mitocondrias , Animales , Ratones , ADN Mitocondrial/metabolismo , Fumarato Hidratasa/genética , Fumarato Hidratasa/metabolismo , Fumaratos/metabolismo , Mitocondrias/enzimología , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Riñón/enzimología , Riñón/metabolismo , Riñón/patología , Citosol/metabolismo
3.
Brain ; 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38574200

RESUMEN

Degeneration of dopaminergic neurons in the substantia nigra and their striatal axon terminals causes cardinal motor symptoms of Parkinson's disease. In idiopathic cases, high levels of mitochondrial DNA alterations leading to mitochondrial dysfunction are a central feature of these vulnerable neurons. Here we present a mouse model expressing the K320E-variant of the mitochondrial helicase Twinkle in dopaminergic neurons, leading to accelerated mitochondrial DNA mutations. These K320E-TwinkleDaN mice showed normal motor function at 20 months of age, although ∼70% of nigral dopaminergic neurons had perished. Remaining neurons still preserved ∼75% of axon terminals in the dorsal striatum and enabled normal dopamine release. Transcriptome analysis and viral tracing confirmed compensatory axonal sprouting of the surviving neurons. We conclude that a small population of substantia nigra dopaminergic neurons is able to adapt to the accumulation of mitochondrial DNA mutations and maintain motor control.

4.
Mol Cell ; 67(6): 922-935.e5, 2017 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-28918902

RESUMEN

The mechanisms that link environmental and intracellular stimuli to mitochondrial functions, including fission/fusion, ATP production, metabolite biogenesis, and apoptosis, are not well understood. Here, we demonstrate that the nutrient-sensing mechanistic/mammalian target of rapamycin complex 1 (mTORC1) stimulates translation of mitochondrial fission process 1 (MTFP1) to control mitochondrial fission and apoptosis. Expression of MTFP1 is coupled to pro-fission phosphorylation and mitochondrial recruitment of the fission GTPase dynamin-related protein 1 (DRP1). Potent active-site mTOR inhibitors engender mitochondrial hyperfusion due to the diminished translation of MTFP1, which is mediated by translation initiation factor 4E (eIF4E)-binding proteins (4E-BPs). Uncoupling MTFP1 levels from the mTORC1/4E-BP pathway upon mTOR inhibition blocks the hyperfusion response and leads to apoptosis by converting mTOR inhibitor action from cytostatic to cytotoxic. These data provide direct evidence for cell survival upon mTOR inhibition through mitochondrial hyperfusion employing MTFP1 as a critical effector of mTORC1 to govern cell fate decisions.


Asunto(s)
Proteínas de la Membrana/metabolismo , Mitocondrias/enzimología , Dinámicas Mitocondriales , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Apoptosis , Sistemas CRISPR-Cas , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular , Línea Celular Tumoral , Supervivencia Celular , Dinaminas/genética , Dinaminas/metabolismo , Factores Eucarióticos de Iniciación/genética , Factores Eucarióticos de Iniciación/metabolismo , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Proteínas de la Membrana/genética , Mitocondrias/efectos de los fármacos , Mitocondrias/ultraestructura , Dinámicas Mitocondriales/efectos de los fármacos , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Interferencia de ARN , Transducción de Señal , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/genética , Transfección
5.
Nucleic Acids Res ; 51(21): e107, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37850644

RESUMEN

Mitochondrial DNA (mtDNA) encodes the core subunits for OXPHOS, essential in near-all eukaryotes. Packed into distinct foci (nucleoids) inside mitochondria, the number of mtDNA copies differs between cell-types and is affected in several human diseases. Currently, common protocols estimate per-cell mtDNA-molecule numbers by sequencing or qPCR from bulk samples. However, this does not allow insight into cell-to-cell heterogeneity and can mask phenotypical sub-populations. Here, we present mtFociCounter, a single-cell image analysis tool for reproducible quantification of nucleoids and other foci. mtFociCounter is a light-weight, open-source freeware and overcomes current limitations to reproducible single-cell analysis of mitochondrial foci. We demonstrate its use by analysing 2165 single fibroblasts, and observe a large cell-to-cell heterogeneity in nucleoid numbers. In addition, mtFociCounter quantifies mitochondrial content and our results show good correlation (R = 0.90) between nucleoid number and mitochondrial area, and we find nucleoid density is less variable than nucleoid numbers in wild-type cells. Finally, we demonstrate mtFociCounter readily detects differences in foci-numbers upon sample treatment, and applies to Mitochondrial RNA Granules and superresolution microscopy. mtFociCounter provides a versatile solution to reproducibly quantify cellular foci in single cells and our results highlight the importance of accounting for cell-to-cell variance and mitochondrial context in mitochondrial foci analysis.


Asunto(s)
ADN Mitocondrial , Mitocondrias , Humanos , ADN Mitocondrial/ultraestructura , Microscopía , Mitocondrias/ultraestructura , Análisis de la Célula Individual
6.
EMBO J ; 39(24): e107326, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33295661

RESUMEN

Mitochondria are dynamic organelles adapting their morphology by cycles of fission and fusion events to control cellular homeostasis. In this issue of The EMBO Journal, Murata and colleagues (2020) show that lack of mitochondrial division leads to safeguard mechanisms, induced by transient mitochondrial membrane depolarization and activation of the metalloprotease OMA1, to prevent extreme mitochondrial fusion and to maintain optimal mitochondrial bioenergetics.


Asunto(s)
Mitocondrias , Dinámicas Mitocondriales , Homeostasis , Metaloproteasas , Mitocondrias/genética
7.
Chembiochem ; 24(11): e202200774, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36917207

RESUMEN

The targeting of bioactive molecules and probes to mitochondria can be achieved by coupling to the lipophilic triphenyl phosphonium (TPP) cation, which accumulates several hundred-fold within mitochondria in response to the mitochondrial membrane potential (Δψm ). Typically, a simple alkane links the TPP to its "cargo", increasing overall hydrophobicity. As it would be beneficial to enhance the water solubility of mitochondria-targeted compounds we explored the effects of replacing the alkyl linker with a polyethylene glycol (PEG). We found that the use of PEG led to compounds that were readily taken up by isolated mitochondria and by mitochondria inside cells. Within mitochondria the PEG linker greatly decreased adsorption of the TPP constructs to the matrix-facing face of the mitochondrial inner membrane. These findings will allow the distribution of mitochondria-targeted TPP compounds within mitochondria to be fine-tuned.


Asunto(s)
Mitocondrias , Polietilenglicoles , Interacciones Hidrofóbicas e Hidrofílicas , Compuestos Organofosforados/farmacología
8.
Brain ; 145(9): 3095-3107, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-35718349

RESUMEN

The hereditary spastic paraplegias (HSP) are among the most genetically diverse of all Mendelian disorders. They comprise a large group of neurodegenerative diseases that may be divided into 'pure HSP' in forms of the disease primarily entailing progressive lower-limb weakness and spasticity, and 'complex HSP' when these features are accompanied by other neurological (or non-neurological) clinical signs. Here, we identified biallelic variants in the transmembrane protein 63C (TMEM63C) gene, encoding a predicted osmosensitive calcium-permeable cation channel, in individuals with hereditary spastic paraplegias associated with mild intellectual disability in some, but not all cases. Biochemical and microscopy analyses revealed that TMEM63C is an endoplasmic reticulum-localized protein, which is particularly enriched at mitochondria-endoplasmic reticulum contact sites. Functional in cellula studies indicate a role for TMEM63C in regulating both endoplasmic reticulum and mitochondrial morphologies. Together, these findings identify autosomal recessive TMEM63C variants as a cause of pure and complex HSP and add to the growing evidence of a fundamental pathomolecular role of perturbed mitochondrial-endoplasmic reticulum dynamics in motor neurone degenerative diseases.


Asunto(s)
Canales de Calcio , Mitocondrias , Paraplejía Espástica Hereditaria , Canales de Calcio/genética , Retículo Endoplásmico/genética , Humanos , Mitocondrias/patología , Mutación , Paraplejía Espástica Hereditaria/genética
9.
Nature ; 542(7640): 251-254, 2017 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-28146471

RESUMEN

Peroxisomes function together with mitochondria in a number of essential biochemical pathways, from bile acid synthesis to fatty acid oxidation. Peroxisomes grow and divide from pre-existing organelles, but can also emerge de novo in the cell. The physiological regulation of de novo peroxisome biogenesis remains unclear, and it is thought that peroxisomes emerge from the endoplasmic reticulum in both mammalian and yeast cells. However, in contrast to the yeast system, a number of integral peroxisomal membrane proteins are imported into mitochondria in mammalian cells in the absence of peroxisomes, including Pex3, Pex12, Pex13, Pex14, Pex26, PMP34 and ALDP. Overall, the mitochondrial localization of peroxisomal membrane proteins in mammalian cells has largely been considered a mis-targeting artefact in which de novo biogenesis occurs exclusively from endoplasmic reticulum-targeted peroxins. Here, in following the generation of new peroxisomes within human patient fibroblasts lacking peroxisomes, we show that the essential import receptors Pex3 and Pex14 target mitochondria, where they are selectively released into vesicular pre-peroxisomal structures. Maturation of pre-peroxisomes containing Pex3 and Pex14 requires fusion with endoplasmic reticulum-derived vesicles carrying Pex16, thereby providing full import competence. These findings demonstrate the hybrid nature of newly born peroxisomes, expanding their functional links to mitochondria.


Asunto(s)
Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , Biogénesis de Organelos , Peroxisomas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Línea Celular , Fibroblastos/citología , Humanos , Membranas Intracelulares/metabolismo , Lipoproteínas/deficiencia , Lipoproteínas/genética , Lipoproteínas/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Peroxinas , Transporte de Proteínas , Proteínas Represoras/metabolismo , Síndrome de Zellweger/genética , Síndrome de Zellweger/patología
10.
Mol Cell ; 59(6): 941-55, 2015 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-26384664

RESUMEN

There has been evidence that mitochondrial fragmentation is required for apoptosis, but the molecular links between the machinery regulating dynamics and cell death have been controversial. Indeed, activated BAX and BAK can form functional channels in liposomes, bringing into question the contribution of mitochondrial dynamics in apoptosis. We now demonstrate that the activation of apoptosis triggers MAPL/MUL1-dependent SUMOylation of the fission GTPase Drp1, a process requisite for cytochrome c release. SUMOylated Drp1 functionally stabilizes ER/mitochondrial contact sites that act as hotspots for mitochondrial constriction, calcium flux, cristae remodeling, and cytochrome c release. The loss of MAPL does not alter the activation and assembly of BAX/BAK oligomers, indicating that MAPL is activated downstream of BAX/BAK. This work demonstrates how interorganellar contacts are dynamically regulated through active SUMOylation during apoptosis, creating a stabilized platform that signals cytochrome c release.


Asunto(s)
Apoptosis , GTP Fosfohidrolasas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Mitocondriales/metabolismo , Sumoilación , Ubiquitina-Proteína Ligasas/metabolismo , Señalización del Calcio , Cisteína Endopeptidasas/metabolismo , Dinaminas , Retículo Endoplásmico/metabolismo , Células HeLa , Humanos , Mitocondrias/metabolismo , Péptido Hidrolasas/metabolismo , Transporte de Proteínas , Transducción de Señal , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína X Asociada a bcl-2/metabolismo
11.
Cell Mol Life Sci ; 79(6): 327, 2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35637383

RESUMEN

The architecture of mitochondria adapts to physiological contexts: while mitochondrial fragmentation is usually associated to quality control and cell death, mitochondrial elongation often enhances cell survival during stress. Understanding how these events are regulated is important to elucidate how mitochondrial dynamics control cell fate. Here, we show that the tyrosine kinase Src regulates mitochondrial morphology. Deletion of Src increased mitochondrial size and reduced cellular respiration independently of mitochondrial mass, mitochondrial membrane potential or ATP levels. Re-expression of Src targeted to the mitochondrial matrix, but not of Src targeted to the plasma membrane, rescued mitochondrial morphology in a kinase activity-dependent manner. These findings highlight a novel function for Src in the control of mitochondrial dynamics.


Asunto(s)
Mitocondrias , Familia-src Quinasas , Respiración de la Célula , Potencial de la Membrana Mitocondrial , Mitocondrias/metabolismo , Fosforilación , Familia-src Quinasas/genética , Familia-src Quinasas/metabolismo
12.
Nucleic Acids Res ; 49(9): 5230-5248, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-33956154

RESUMEN

Mutations in POLG, encoding POLγA, the catalytic subunit of the mitochondrial DNA polymerase, cause a spectrum of disorders characterized by mtDNA instability. However, the molecular pathogenesis of POLG-related diseases is poorly understood and efficient treatments are missing. Here, we generate the PolgA449T/A449T mouse model, which reproduces the A467T change, the most common human recessive mutation of POLG. We show that the mouse A449T mutation impairs DNA binding and mtDNA synthesis activities of POLγ, leading to a stalling phenotype. Most importantly, the A449T mutation also strongly impairs interactions with POLγB, the accessory subunit of the POLγ holoenzyme. This allows the free POLγA to become a substrate for LONP1 protease degradation, leading to dramatically reduced levels of POLγA in A449T mouse tissues. Therefore, in addition to its role as a processivity factor, POLγB acts to stabilize POLγA and to prevent LONP1-dependent degradation. Notably, we validated this mechanism for other disease-associated mutations affecting the interaction between the two POLγ subunits. We suggest that targeting POLγA turnover can be exploited as a target for the development of future therapies.


Asunto(s)
ADN Polimerasa gamma/genética , Proteasas ATP-Dependientes/metabolismo , Animales , Células Cultivadas , ADN Polimerasa gamma/metabolismo , Replicación del ADN , ADN Mitocondrial/análisis , Estabilidad de Enzimas/genética , Células HeLa , Holoenzimas/metabolismo , Humanos , Ratones , Proteínas Mitocondriales/metabolismo , Mutación
13.
J Med Genet ; 58(3): 155-167, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32439808

RESUMEN

BACKGROUND: Mitochondria provide ATP through the process of oxidative phosphorylation, physically located in the inner mitochondrial membrane (IMM). The mitochondrial contact site and organising system (MICOS) complex is known as the 'mitoskeleton' due to its role in maintaining IMM architecture. APOO encodes MIC26, a component of MICOS, whose exact function in its maintenance or assembly has still not been completely elucidated. METHODS: We have studied a family in which the most affected subject presented progressive developmental delay, lactic acidosis, muscle weakness, hypotonia, weight loss, gastrointestinal and body temperature dysautonomia, repetitive infections, cognitive impairment and autistic behaviour. Other family members showed variable phenotype presentation. Whole exome sequencing was used to screen for pathological variants. Patient-derived skin fibroblasts were used to confirm the pathogenicity of the variant found in APOO. Knockout models in Drosophila melanogaster and Saccharomyces cerevisiae were employed to validate MIC26 involvement in MICOS assembly and mitochondrial function. RESULTS: A likely pathogenic c.350T>C transition was found in APOO predicting an I117T substitution in MIC26. The mutation caused impaired processing of the protein during import and faulty insertion into the IMM. This was associated with altered MICOS assembly and cristae junction disruption. The corresponding mutation in MIC26 or complete loss was associated with mitochondrial structural and functional deficiencies in yeast and D. melanogaster models. CONCLUSION: This is the first case of pathogenic mutation in APOO, causing altered MICOS assembly and neuromuscular impairment. MIC26 is involved in the assembly or stability of MICOS in humans, yeast and flies.


Asunto(s)
Apolipoproteínas/genética , Trastorno Autístico/genética , Disfunción Cognitiva/genética , Proteínas de la Membrana/genética , Miopatías Mitocondriales/genética , Proteínas Mitocondriales/genética , Proteínas de Saccharomyces cerevisiae/genética , Acidosis Láctica/genética , Acidosis Láctica/patología , Animales , Trastorno Autístico/patología , Disfunción Cognitiva/patología , Drosophila melanogaster/genética , Fibroblastos/metabolismo , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/patología , Humanos , Membranas Mitocondriales/metabolismo , Membranas Mitocondriales/patología , Miopatías Mitocondriales/epidemiología , Miopatías Mitocondriales/patología , Unión Proteica , Saccharomyces cerevisiae/genética
14.
Exp Eye Res ; 213: 108793, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34656549

RESUMEN

Membrane contact sites (MCS) play crucial roles in cell physiology with dysfunction in several MCS proteins being linked with neurological and optic nerve diseases. Although there have been significant advances in imaging these interactions over the past two decades with advanced electron microscopy techniques, super-resolution imaging and proximity-dependent fluorescent reporters, a technique to observe and quantify MCS in mammalian optic nerve tissues has not yet been reported. We demonstrate for the first time that proximity ligation assay (PLA), a technique already used in mammalian cell lines, can be used as an efficient method of quantifying inter-organelle contact sites, namely mitochondria-endoplasmic reticulum (ER) and mitochondria-late-endosomes, in mammalian optic nerve tissues treated with adeno-associated virus (AAV) gene therapy with wild-type or phosphomimetic (active) protrudin. PLA utilises complementary single-stranded DNA oligomers bound to secondary antibodies that hybridise and complete a circular piece of DNA when the primary antibodies of interest interact. These interactions can be detected by amplifying the circular DNA and adding fluorescent probes. We show that PLA is a useful method that can be used to quantify MCS in optic nerve tissues. We have found that upregulation of protrudin with gene therapy significantly increases the number of mitochondria-ER and mitochondria-Rab7-late endosomes contact sites in optic nerves.


Asunto(s)
Bioensayo/métodos , Retículo Endoplásmico/metabolismo , Endosomas/metabolismo , Membranas Mitocondriales/metabolismo , Nervio Óptico/metabolismo , Animales , Sitios de Unión , Dependovirus/genética , Femenino , Expresión Génica , Terapia Genética , Vectores Genéticos , Proteínas Fluorescentes Verdes/genética , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Orgánulos , Fijación del Tejido , Proteínas de Transporte Vesicular/genética
15.
Int J Mol Sci ; 22(7)2021 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-33918511

RESUMEN

Bcl-2 family proteins are considered as one of the major regulators of apoptosis. Indeed, this family is known to control the mitochondrial outer membrane permeabilization (MOMP): a central step in the mitochondrial pathway of apoptosis. However, in recent years Bcl-2 family members began to emerge as a new class of intracellular calcium (Ca2+) regulators. At mitochondria-ER contacts (MERCs) these proteins are able to interact with major Ca2+ transporters, thus controlling mitochondrial Ca2+ homeostasis and downstream Ca2+ signalling pathways. Beyond the regulation of cell survival, this Bcl-2-dependent control over the mitochondrial Ca2+ dynamics has far-reaching consequences on the physiology of the cell. Here, we review how the Bcl-2 family of proteins mechanistically regulate mitochondrial Ca2+ homeostasis and how this regulation orchestrates cell death/survival decisions as well as the non-apoptotic process of cell migration.


Asunto(s)
Señalización del Calcio , Mitocondrias/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Animales , Muerte Celular , Movimiento Celular , Retículo Endoplásmico/metabolismo , Humanos
16.
Biochem Biophys Res Commun ; 500(1): 75-86, 2018 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-28495532

RESUMEN

Mitochondria are dynamic organelles involved in numerous physiological functions. Beyond their function in ATP production, mitochondria regulate cell death, reactive oxygen species (ROS) generation, immunity and metabolism. Mitochondria also play a key role in the buffering of cytosolic calcium, and calcium transported into the matrix regulates mitochondrial metabolism. Recently, the identification of the mitochondrial calcium uniporter (MCU) and associated regulators has allowed the characterization of new physiological roles for calcium in both mitochondrial and cellular homeostasis. Indeed, recent work has highlighted the importance of mitochondrial calcium homeostasis in regulating cell migration. Cell migration is a property common to all metazoans and is critical to embryogenesis, cancer progression, wound-healing and immune surveillance. Previous work has established that cytoplasmic calcium is a key regulator of cell migration, as oscillations in cytosolic calcium activate cytoskeletal remodelling, actin contraction and focal adhesion (FA) turnover necessary for cell movement. Recent work using animal models and in cellulo experiments to genetically modulate MCU and partners have shed new light on the role of mitochondrial calcium dynamics in cytoskeletal remodelling through the modulation of ATP and ROS production, as well as intracellular calcium signalling. This review focuses on MCU and its regulators in cell migration during physiological and pathophysiological processes including development and cancer. We also present hypotheses to explain the molecular mechanisms by which MCU may regulate mitochondrial dynamics and motility to drive cell migration.


Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Células Eucariotas/metabolismo , Mitocondrias/metabolismo , Neoplasias/metabolismo , Citoesqueleto de Actina , Animales , Canales de Calcio/genética , Señalización del Calcio , Muerte Celular , Movimiento Celular , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Células Eucariotas/citología , Regulación de la Expresión Génica , Homeostasis , Humanos , Neoplasias/genética , Neoplasias/patología , Especies Reactivas de Oxígeno/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo
18.
Proc Natl Acad Sci U S A ; 111(45): 16017-22, 2014 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-25352671

RESUMEN

Hepatic metabolism requires mitochondria to adapt their bioenergetic and biosynthetic output to accompany the ever-changing anabolic/catabolic state of the liver cell, but the wiring of this process is still largely unknown. Using a postprandial mouse liver model and quantitative cryo-EM analysis, we show that when the hepatic mammalian target of rapamycin complex 1 (mTORC1) signaling pathway disengages, the mitochondria network fragments, cristae density drops by 30%, and mitochondrial respiratory capacity decreases by 20%. Instead, mitochondria-ER contacts (MERCs), which mediate calcium and phospholipid fluxes between these organelles, double in length. These events are associated with the transient expression of two previously unidentified C-terminal fragments (CTFs) of Optic atrophy 1 (Opa1), a mitochondrial GTPase that regulates cristae biogenesis and mitochondria dynamics. Expression of Opa1 CTFs in the intermembrane space has no effect on mitochondria morphology, supporting a model in which they are intermediates of an Opa1 degradation program. Using an in vitro assay, we show that these CTFs indeed originate from the cleavage of Opa1 at two evolutionarily conserved consensus sites that map within critical folds of the GTPase. This processing of Opa1, termed C-cleavage, is mediated by the activity of a cysteine protease whose activity is independent from that of Oma1 and presenilin-associated rhomboid-like (PARL), two known Opa1 regulators. However, C-cleavage requires Mitofusin-2 (Mfn2), a key factor in mitochondria-ER tethering, thereby linking cristae remodeling to MERC assembly. Thus, in vivo, mitochondria adapt to metabolic shifts through the parallel remodeling of the cristae and of the MERCs via a mechanism that degrades Opa1 in an Mfn2-dependent pathway.


Asunto(s)
Señalización del Calcio/fisiología , Retículo Endoplásmico/metabolismo , GTP Fosfohidrolasas/metabolismo , Mitocondrias Hepáticas/metabolismo , Periodo Posprandial/fisiología , Animales , Retículo Endoplásmico/genética , GTP Fosfohidrolasas/genética , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Metaloproteasas/genética , Metaloproteasas/metabolismo , Ratones , Mitocondrias Hepáticas/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Proteolisis , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
19.
Biochim Biophys Acta ; 1833(7): 1755-65, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23360981

RESUMEN

The existence of the bcl-2 (B-cell lymphoma-2) gene was reported nearly 30 years ago. Yet, Bcl-2 family group of proteins still surprises us with their structural and functional diversity. Since the discovery of the Bcl-2 family of proteins as one of the main apoptosis judges, the precise mechanism of their action remains a hot topic of intensive scientific research and debates. Although extensive work has been performed on the role of mitochondria in apoptosis, more and more studies point out an implication of the endoplasmic reticulum in this process. Interestingly, Bcl-2 family proteins could be localized to both the mitochondria and the endoplasmic reticulum highlighting their crucial role in apoptosis control. In particular, in these organelles Bcl-2 proteins seem to be involved in calcium homeostasis regulation although the mechanisms underlying this function are still misunderstood. We now assume with high degree of certainty that the majority of Bcl-2 family members take part not only in apoptosis regulation but also in other processes important for the cell physiology briefly denominated as "non-apoptotic" functions. Drawing a complete and comprehensive image of Bcl-2 family requires the understanding of their implications in all cellular processes. Here, we review the current knowledge on the control of calcium homeostasis by the Bcl-2 family at the endoplasmic reticulum and at the mitochondria. Then we focus on the non-apoptotic functions of the Bcl-2 proteins in relation with the regulation of this versatile intracellular messenger. This article is part of a Special Issue entitled: 12th European Symposium on Calcium.


Asunto(s)
Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Animales , Apoptosis , Humanos
20.
Life Sci Alliance ; 7(1)2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37931956

RESUMEN

Mitochondria interact with the ER at structurally and functionally specialized membrane contact sites known as mitochondria-ER contact sites (MERCs). Combining proximity labelling (BioID), co-immunoprecipitation, confocal microscopy and subcellular fractionation, we found that the ER resident SMP-domain protein ESYT1 was enriched at MERCs, where it forms a complex with the outer mitochondrial membrane protein SYNJ2BP. BioID analyses using ER-targeted, outer mitochondrial membrane-targeted, and MERC-targeted baits, confirmed the presence of this complex at MERCs and the specificity of the interaction. Deletion of ESYT1 or SYNJ2BP reduced the number and length of MERCs. Loss of the ESYT1-SYNJ2BP complex impaired ER to mitochondria calcium flux and provoked a significant alteration of the mitochondrial lipidome, most prominently a reduction of cardiolipins and phosphatidylethanolamines. Both phenotypes were rescued by reexpression of WT ESYT1 and an artificial mitochondria-ER tether. Together, these results reveal a novel function for ESYT1 in mitochondrial and cellular homeostasis through its role in the regulation of MERCs.


Asunto(s)
Calcio , Retículo Endoplásmico , Mitocondrias , Sinaptotagminas , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Homeostasis , Lípidos , Mitocondrias/metabolismo , Sinaptotagminas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA