Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(15): 4061-4077.e17, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38878777

RESUMEN

NLRs constitute a large, highly conserved family of cytosolic pattern recognition receptors that are central to health and disease, making them key therapeutic targets. NLRC5 is an enigmatic NLR with mutations associated with inflammatory and infectious diseases, but little is known about its function as an innate immune sensor and cell death regulator. Therefore, we screened for NLRC5's role in response to infections, PAMPs, DAMPs, and cytokines. We identified that NLRC5 acts as an innate immune sensor to drive inflammatory cell death, PANoptosis, in response to specific ligands, including PAMP/heme and heme/cytokine combinations. NLRC5 interacted with NLRP12 and PANoptosome components to form a cell death complex, suggesting an NLR network forms similar to those in plants. Mechanistically, TLR signaling and NAD+ levels regulated NLRC5 expression and ROS production to control cell death. Furthermore, NLRC5-deficient mice were protected in hemolytic and inflammatory models, suggesting that NLRC5 could be a potential therapeutic target.


Asunto(s)
Inflamación , Péptidos y Proteínas de Señalización Intracelular , NAD , Animales , Ratones , Inflamación/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , NAD/metabolismo , Humanos , Inmunidad Innata , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno/metabolismo , Ratones Noqueados , Transducción de Señal , Células HEK293 , Inflamasomas/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Receptores Toll-Like/metabolismo , Masculino , Citocinas/metabolismo , Proteínas de Unión al Calcio
2.
Cell ; 187(2): 276-293.e23, 2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-38171360

RESUMEN

During development, morphogens pattern tissues by instructing cell fate across long distances. Directly visualizing morphogen transport in situ has been inaccessible, so the molecular mechanisms ensuring successful morphogen delivery remain unclear. To tackle this longstanding problem, we developed a mouse model for compromised sonic hedgehog (SHH) morphogen delivery and discovered that endocytic recycling promotes SHH loading into signaling filopodia called cytonemes. We optimized methods to preserve in vivo cytonemes for advanced microscopy and show endogenous SHH localized to cytonemes in developing mouse neural tubes. Depletion of SHH from neural tube cytonemes alters neuronal cell fates and compromises neurodevelopment. Mutation of the filopodial motor myosin 10 (MYO10) reduces cytoneme length and density, which corrupts neuronal signaling activity of both SHH and WNT. Combined, these results demonstrate that cytoneme-based signal transport provides essential contributions to morphogen dispersion during mammalian tissue development and suggest MYO10 is a key regulator of cytoneme function.


Asunto(s)
Estructuras de la Membrana Celular , Miosinas , Tubo Neural , Transducción de Señal , Animales , Ratones , Transporte Biológico , Estructuras de la Membrana Celular/metabolismo , Proteínas Hedgehog/metabolismo , Miosinas/metabolismo , Seudópodos/metabolismo , Tubo Neural/citología , Tubo Neural/metabolismo
3.
Cell ; 185(21): 3877-3895.e21, 2022 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-36152627

RESUMEN

Williams-Beuren syndrome (WBS) is a rare disorder caused by hemizygous microdeletion of ∼27 contiguous genes. Despite neurodevelopmental and cognitive deficits, individuals with WBS have spared or enhanced musical and auditory abilities, potentially offering an insight into the genetic basis of auditory perception. Here, we report that the mouse models of WBS have innately enhanced frequency-discrimination acuity and improved frequency coding in the auditory cortex (ACx). Chemogenetic rescue showed frequency-discrimination hyperacuity is caused by hyperexcitable interneurons in the ACx. Haploinsufficiency of one WBS gene, Gtf2ird1, replicated WBS phenotypes by downregulating the neuropeptide receptor VIPR1. VIPR1 is reduced in the ACx of individuals with WBS and in the cerebral organoids derived from human induced pluripotent stem cells with the WBS microdeletion. Vipr1 deletion or overexpression in ACx interneurons mimicked or reversed, respectively, the cellular and behavioral phenotypes of WBS mice. Thus, the Gtf2ird1-Vipr1 mechanism in ACx interneurons may underlie the superior auditory acuity in WBS.


Asunto(s)
Corteza Auditiva/fisiología , Síndrome de Williams/fisiopatología , Animales , Corteza Auditiva/citología , Modelos Animales de Enfermedad , Humanos , Células Madre Pluripotentes Inducidas , Interneuronas/citología , Interneuronas/fisiología , Ratones , Fenotipo , Transactivadores/genética , Síndrome de Williams/genética
4.
Immunity ; 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39406246

RESUMEN

Nutrient availability and organelle biology direct tissue homeostasis and cell fate, but how these processes orchestrate tissue immunity remains poorly defined. Here, using in vivo CRISPR-Cas9 screens, we uncovered organelle signaling and metabolic processes shaping CD8+ tissue-resident memory T (TRM) cell development. TRM cells depended on mitochondrial translation and respiration. Conversely, three nutrient-dependent lysosomal signaling nodes-Flcn, Ragulator, and Rag GTPases-inhibited intestinal TRM cell formation. Depleting these molecules or amino acids activated the transcription factor Tfeb, thereby linking nutrient stress to TRM programming. Further, Flcn deficiency promoted protective TRM cell responses in the small intestine. Mechanistically, the Flcn-Tfeb axis restrained retinoic acid-induced CCR9 expression for migration and transforming growth factor ß (TGF-ß)-mediated programming for lineage differentiation. Genetic interaction screening revealed that the mitochondrial protein Mrpl52 enabled early TRM cell formation, while Acss1 controlled TRM cell development under Flcn deficiency-associated lysosomal dysregulation. Thus, the interplay between nutrients, organelle signaling, and metabolic adaptation dictates tissue immunity.

5.
Nature ; 628(8007): 442-449, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38538798

RESUMEN

Whereas oncogenes can potentially be inhibited with small molecules, the loss of tumour suppressors is more common and is problematic because the tumour-suppressor proteins are no longer present to be targeted. Notable examples include SMARCB1-mutant cancers, which are highly lethal malignancies driven by the inactivation of a subunit of SWI/SNF (also known as BAF) chromatin-remodelling complexes. Here, to generate mechanistic insights into the consequences of SMARCB1 mutation and to identify vulnerabilities, we contributed 14 SMARCB1-mutant cell lines to a near genome-wide CRISPR screen as part of the Cancer Dependency Map Project1-3. We report that the little-studied gene DDB1-CUL4-associated factor 5 (DCAF5) is required for the survival of SMARCB1-mutant cancers. We show that DCAF5 has a quality-control function for SWI/SNF complexes and promotes the degradation of incompletely assembled SWI/SNF complexes in the absence of SMARCB1. After depletion of DCAF5, SMARCB1-deficient SWI/SNF complexes reaccumulate, bind to target loci and restore SWI/SNF-mediated gene expression to levels that are sufficient to reverse the cancer state, including in vivo. Consequently, cancer results not from the loss of SMARCB1 function per se, but rather from DCAF5-mediated degradation of SWI/SNF complexes. These data indicate that therapeutic targeting of ubiquitin-mediated quality-control factors may effectively reverse the malignant state of some cancers driven by disruption of tumour suppressor complexes.


Asunto(s)
Complejos Multiproteicos , Mutación , Neoplasias , Proteína SMARCB1 , Animales , Femenino , Humanos , Masculino , Ratones , Línea Celular Tumoral , Sistemas CRISPR-Cas , Edición Génica , Neoplasias/genética , Neoplasias/metabolismo , Proteína SMARCB1/deficiencia , Proteína SMARCB1/genética , Proteína SMARCB1/metabolismo , Proteínas Supresoras de Tumor/deficiencia , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Proteolisis , Ubiquitina/metabolismo
6.
Mol Cell ; 82(13): 2472-2489.e8, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35537449

RESUMEN

Disruption of antagonism between SWI/SNF chromatin remodelers and polycomb repressor complexes drives the formation of numerous cancer types. Recently, an inhibitor of the polycomb protein EZH2 was approved for the treatment of a sarcoma mutant in the SWI/SNF subunit SMARCB1, but resistance occurs. Here, we performed CRISPR screens in SMARCB1-mutant rhabdoid tumor cells to identify genetic contributors to SWI/SNF-polycomb antagonism and potential resistance mechanisms. We found that loss of the H3K36 methyltransferase NSD1 caused resistance to EZH2 inhibition. We show that NSD1 antagonizes polycomb via cooperation with SWI/SNF and identify co-occurrence of NSD1 inactivation in SWI/SNF-defective cancers, indicating in vivo relevance. We demonstrate that H3K36me2 itself has an essential role in the activation of polycomb target genes as inhibition of the H3K36me2 demethylase KDM2A restores the efficacy of EZH2 inhibition in SWI/SNF-deficient cells lacking NSD1. Together our data expand the mechanistic understanding of SWI/SNF and polycomb interplay and identify NSD1 as the key for coordinating this transcriptional control.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2 , Proteínas F-Box , N-Metiltransferasa de Histona-Lisina , Histona Demetilasas con Dominio de Jumonji , Proteínas del Grupo Polycomb , Proteína SMARCB1 , Cromatina/genética , Cromatina/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/antagonistas & inhibidores , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Proteínas del Grupo Polycomb/genética , Proteínas del Grupo Polycomb/metabolismo , Tumor Rabdoide/genética , Tumor Rabdoide/metabolismo , Tumor Rabdoide/patología , Proteína SMARCB1/genética , Proteína SMARCB1/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Transcripcional/genética , Células Tumorales Cultivadas/metabolismo
7.
Nature ; 624(7990): 154-163, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37968405

RESUMEN

CD8+ cytotoxic T cells (CTLs) orchestrate antitumour immunity and exhibit inherent heterogeneity1,2, with precursor exhausted T (Tpex) cells but not terminally exhausted T (Tex) cells capable of responding to existing immunotherapies3-7. The gene regulatory network that underlies CTL differentiation and whether Tex cell responses can be functionally reinvigorated are incompletely understood. Here we systematically mapped causal gene regulatory networks using single-cell CRISPR screens in vivo and discovered checkpoints for CTL differentiation. First, the exit from quiescence of Tpex cells initiated successive differentiation into intermediate Tex cells. This process is differentially regulated by IKAROS and ETS1, the deficiencies of which dampened and increased mTORC1-associated metabolic activities, respectively. IKAROS-deficient cells accumulated as a metabolically quiescent Tpex cell population with limited differentiation potential following immune checkpoint blockade (ICB). Conversely, targeting ETS1 improved antitumour immunity and ICB efficacy by boosting differentiation of Tpex to intermediate Tex cells and metabolic rewiring. Mechanistically, TCF-1 and BATF are the targets for IKAROS and ETS1, respectively. Second, the RBPJ-IRF1 axis promoted differentiation of intermediate Tex to terminal Tex cells. Accordingly, targeting RBPJ enhanced functional and epigenetic reprogramming of Tex cells towards the proliferative state and improved therapeutic effects and ICB efficacy. Collectively, our study reveals that promoting the exit from quiescence of Tpex cells and enriching the proliferative Tex cell state act as key modalities for antitumour effects and provides a systemic framework to integrate cell fate regulomes and reprogrammable functional determinants for cancer immunity.


Asunto(s)
Diferenciación Celular , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Edición Génica , Mutagénesis , Neoplasias , Análisis de la Célula Individual , Linfocitos T Citotóxicos , Humanos , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Inhibidores de Puntos de Control Inmunológico/inmunología , Inhibidores de Puntos de Control Inmunológico/farmacología , Neoplasias/genética , Neoplasias/inmunología , Análisis de la Célula Individual/métodos , Linfocitos T Citotóxicos/citología , Linfocitos T Citotóxicos/efectos de los fármacos , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/metabolismo
8.
Nature ; 607(7917): 135-141, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35732731

RESUMEN

The identification of mechanisms to promote memory T (Tmem) cells has important implications for vaccination and anti-cancer immunotherapy1-4. Using a CRISPR-based screen for negative regulators of Tmem cell generation in vivo5, here we identify multiple components of the mammalian canonical BRG1/BRM-associated factor (cBAF)6,7. Several components of the cBAF complex are essential for the differentiation of activated CD8+ T cells into T effector (Teff) cells, and their loss promotes Tmem cell formation in vivo. During the first division of activated CD8+ T cells, cBAF and MYC8 frequently co-assort asymmetrically to the two daughter cells. Daughter cells with high MYC and high cBAF display a cell fate trajectory towards Teff cells, whereas those with low MYC and low cBAF preferentially differentiate towards Tmem cells. The cBAF complex and MYC physically interact to establish the chromatin landscape in activated CD8+ T cells. Treatment of naive CD8+ T cells with a putative cBAF inhibitor during the first 48 h of activation, before the generation of chimeric antigen receptor T (CAR-T) cells, markedly improves efficacy in a mouse solid tumour model. Our results establish cBAF as a negative determinant of Tmem cell fate and suggest that manipulation of cBAF early in T cell differentiation can improve cancer immunotherapy.


Asunto(s)
Linfocitos T CD8-positivos , Diferenciación Celular , ADN Helicasas , Complejos Multiproteicos , Proteínas Nucleares , Proteínas Proto-Oncogénicas c-myc , Factores de Transcripción , Animales , Linfocitos T CD8-positivos/citología , ADN Helicasas/metabolismo , Modelos Animales de Enfermedad , Memoria Inmunológica , Inmunoterapia , Células T de Memoria/citología , Ratones , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Neoplasias , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Receptores Quiméricos de Antígenos , Factores de Transcripción/metabolismo
9.
Mol Cell ; 77(6): 1206-1221.e7, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-31980388

RESUMEN

Alternative polyadenylation (APA) contributes to transcriptome complexity by generating mRNA isoforms with varying 3' UTR lengths. APA leading to 3' UTR shortening (3' US) is a common feature of most cancer cells; however, the molecular mechanisms are not understood. Here, we describe a widespread mechanism promoting 3' US in cancer through ubiquitination of the mRNA 3' end processing complex protein, PCF11, by the cancer-specific MAGE-A11-HUWE1 ubiquitin ligase. MAGE-A11 is normally expressed only in the male germline but is frequently re-activated in cancers. MAGE-A11 is necessary for cancer cell viability and is sufficient to drive tumorigenesis. Screening for targets of MAGE-A11 revealed that it ubiquitinates PCF11, resulting in loss of CFIm25 from the mRNA 3' end processing complex. This leads to APA of many transcripts affecting core oncogenic and tumor suppressors, including cyclin D2 and PTEN. These findings provide insights into the molecular mechanisms driving APA in cancer and suggest therapeutic strategies.


Asunto(s)
Regiones no Traducidas 3'/genética , Antígenos de Neoplasias/metabolismo , Neoplasias Pulmonares/patología , Proteínas de Neoplasias/metabolismo , Neoplasias Ováricas/patología , ARN Mensajero/metabolismo , Ubiquitina/metabolismo , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Animales , Antígenos de Neoplasias/genética , Apoptosis , Biomarcadores de Tumor , Carcinogénesis , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Proliferación Celular , Factor de Especificidad de Desdoblamiento y Poliadenilación/genética , Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Proteínas de Neoplasias/genética , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Poliadenilación , Empalme del ARN , ARN Mensajero/genética , Células Tumorales Cultivadas , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Ensayos Antitumor por Modelo de Xenoinjerto , Factores de Escisión y Poliadenilación de ARNm/genética
10.
Mol Cell ; 79(4): 645-659.e9, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32692974

RESUMEN

Stress granules (SGs) are membrane-less ribonucleoprotein condensates that form in response to various stress stimuli via phase separation. SGs act as a protective mechanism to cope with acute stress, but persistent SGs have cytotoxic effects that are associated with several age-related diseases. Here, we demonstrate that the testis-specific protein, MAGE-B2, increases cellular stress tolerance by suppressing SG formation through translational inhibition of the key SG nucleator G3BP. MAGE-B2 reduces G3BP protein levels below the critical concentration for phase separation and suppresses SG initiation. Knockout of the MAGE-B2 mouse ortholog or overexpression of G3BP1 confers hypersensitivity of the male germline to heat stress in vivo. Thus, MAGE-B2 provides cytoprotection to maintain mammalian spermatogenesis, a highly thermosensitive process that must be preserved throughout reproductive life. These results demonstrate a mechanism that allows for tissue-specific resistance against stress and could aid in the development of male fertility therapies.


Asunto(s)
Gránulos Citoplasmáticos/genética , ADN Helicasas/genética , Proteínas de Unión a Poli-ADP-Ribosa/genética , Biosíntesis de Proteínas , ARN Helicasas/genética , Proteínas con Motivos de Reconocimiento de ARN/genética , Estrés Fisiológico/genética , Regiones no Traducidas 5' , Animales , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Gránulos Citoplasmáticos/metabolismo , Gránulos Citoplasmáticos/patología , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , ADN Helicasas/metabolismo , Femenino , Células HCT116 , Células HeLa , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , ARN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Espermatogonias/citología , Espermatogonias/patología , Testículo/citología , Testículo/metabolismo
11.
PLoS Biol ; 22(9): e3002760, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39226322

RESUMEN

53BP1 is a well-established DNA damage repair factor that has recently emerged to critically regulate gene expression for tumor suppression and neural development. However, its precise function and regulatory mechanisms remain unclear. Here, we showed that phosphorylation of 53BP1 at serine 25 by ATM is required for neural progenitor cell proliferation and neuronal differentiation in cortical brain organoids. Dynamic phosphorylation of 53BP1-serine 25 controls 53BP1 target genes governing neuronal differentiation and function, cellular response to stress, and apoptosis. Mechanistically, ATM and RNF168 govern 53BP1's binding to gene loci to directly affect gene regulation, especially at genes for neuronal differentiation and maturation. 53BP1 serine 25 phosphorylation effectively impedes its binding to bivalent or H3K27me3-occupied promoters, especially at genes regulating H3K4 methylation, neuronal functions, and cell proliferation. Beyond 53BP1, ATM-dependent phosphorylation displays wide-ranging effects, regulating factors in neuronal differentiation, cytoskeleton, p53 regulation, as well as key signaling pathways such as ATM, BDNF, and WNT during cortical organoid differentiation. Together, our data suggest that the interplay between 53BP1 and ATM orchestrates essential genetic programs for cell morphogenesis, tissue organization, and developmental pathways crucial for human cortical development.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada , Organoides , Proteína 1 de Unión al Supresor Tumoral P53 , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/genética , Organoides/metabolismo , Humanos , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/genética , Fosforilación , Daño del ADN , Corteza Cerebral/metabolismo , Corteza Cerebral/citología , Células-Madre Neurales/metabolismo , Diferenciación Celular/genética , Proliferación Celular , Reparación del ADN , Neurogénesis/genética , Neuronas/metabolismo , Transducción de Señal
12.
Nature ; 600(7888): 308-313, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34795452

RESUMEN

Nutrients are emerging regulators of adaptive immunity1. Selective nutrients interplay with immunological signals to activate mechanistic target of rapamycin complex 1 (mTORC1), a key driver of cell metabolism2-4, but how these environmental signals are integrated for immune regulation remains unclear. Here we use genome-wide CRISPR screening combined with protein-protein interaction networks to identify regulatory modules that mediate immune receptor- and nutrient-dependent signalling to mTORC1 in mouse regulatory T (Treg) cells. SEC31A is identified to promote mTORC1 activation by interacting with the GATOR2 component SEC13 to protect it from SKP1-dependent proteasomal degradation. Accordingly, loss of SEC31A impairs T cell priming and Treg suppressive function in mice. In addition, the SWI/SNF complex restricts expression of the amino acid sensor CASTOR1, thereby enhancing mTORC1 activation. Moreover, we reveal that the CCDC101-associated SAGA complex is a potent inhibitor of mTORC1, which limits the expression of glucose and amino acid transporters and maintains T cell quiescence in vivo. Specific deletion of Ccdc101 in mouse Treg cells results in uncontrolled inflammation but improved antitumour immunity. Collectively, our results establish epigenetic and post-translational mechanisms that underpin how nutrient transporters, sensors and transducers interplay with immune signals for three-tiered regulation of mTORC1 activity and identify their pivotal roles in licensing T cell immunity and immune tolerance.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Nutrientes , Mapas de Interacción de Proteínas , Linfocitos T Reguladores , Animales , Femenino , Masculino , Ratones , Proteínas Portadoras/metabolismo , Sistemas CRISPR-Cas/genética , Factores de Transcripción Forkhead/metabolismo , Genoma/genética , Homeostasis , Tolerancia Inmunológica , Inflamación/patología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Neoplasias/inmunología , Proteínas Nucleares/metabolismo , Nutrientes/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Transactivadores/metabolismo
13.
Nature ; 595(7866): 295-302, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34079130

RESUMEN

Sickle cell disease (SCD) is caused by a mutation in the ß-globin gene HBB1. We used a custom adenine base editor (ABE8e-NRCH)2,3 to convert the SCD allele (HBBS) into Makassar ß-globin (HBBG), a non-pathogenic variant4,5. Ex vivo delivery of mRNA encoding the base editor with a targeting guide RNA into haematopoietic stem and progenitor cells (HSPCs) from patients with SCD resulted in 80% conversion of HBBS to HBBG. Sixteen weeks after transplantation of edited human HSPCs into immunodeficient mice, the frequency of HBBG was 68% and hypoxia-induced sickling of bone marrow reticulocytes had decreased fivefold, indicating durable gene editing. To assess the physiological effects of HBBS base editing, we delivered ABE8e-NRCH and guide RNA into HSPCs from a humanized SCD mouse6 and then transplanted these cells into irradiated mice. After sixteen weeks, Makassar ß-globin represented 79% of ß-globin protein in blood, and hypoxia-induced sickling was reduced threefold. Mice that received base-edited HSPCs showed near-normal haematological parameters and reduced splenic pathology compared to mice that received unedited cells. Secondary transplantation of edited bone marrow confirmed that the gene editing was durable in long-term haematopoietic stem cells and showed that HBBS-to-HBBG editing of 20% or more is sufficient for phenotypic rescue. Base editing of human HSPCs avoided the p53 activation and larger deletions that have been observed following Cas9 nuclease treatment. These findings point towards a one-time autologous treatment for SCD that eliminates pathogenic HBBS, generates benign HBBG, and minimizes the undesired consequences of double-strand DNA breaks.


Asunto(s)
Adenina/metabolismo , Anemia de Células Falciformes/genética , Anemia de Células Falciformes/terapia , Edición Génica , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/metabolismo , Globinas beta/genética , Animales , Antígenos CD34/metabolismo , Proteína 9 Asociada a CRISPR/metabolismo , Modelos Animales de Enfermedad , Femenino , Terapia Genética , Genoma Humano/genética , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/patología , Humanos , Masculino , Ratones
14.
Mol Cell ; 74(4): 742-757.e8, 2019 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-30979586

RESUMEN

Disturbances in autophagy and stress granule dynamics have been implicated as potential mechanisms underlying inclusion body myopathy (IBM) and related disorders. Yet the roles of core autophagy proteins in IBM and stress granule dynamics remain poorly characterized. Here, we demonstrate that disrupted expression of the core autophagy proteins ULK1 and ULK2 in mice causes a vacuolar myopathy with ubiquitin and TDP-43-positive inclusions; this myopathy is similar to that caused by VCP/p97 mutations, the most common cause of familial IBM. Mechanistically, we show that ULK1/2 localize to stress granules and phosphorylate VCP, thereby increasing VCP's activity and ability to disassemble stress granules. These data suggest that VCP dysregulation and defective stress granule disassembly contribute to IBM-like disease in Ulk1/2-deficient mice. In addition, stress granule disassembly is accelerated by an ULK1/2 agonist, suggesting ULK1/2 as targets for exploiting the higher-order regulation of stress granules for therapeutic intervention of IBM and related disorders.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Enfermedades por Almacenamiento Lisosomal/genética , Enfermedades Musculares/genética , Proteínas Serina-Treonina Quinasas/genética , Proteína que Contiene Valosina/genética , Adenosina Trifosfatasas/genética , Animales , Autofagia/genética , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Humanos , Cuerpos de Inclusión/genética , Cuerpos de Inclusión/patología , Enfermedades por Almacenamiento Lisosomal/metabolismo , Enfermedades por Almacenamiento Lisosomal/patología , Ratones , Enfermedades Musculares/metabolismo , Enfermedades Musculares/patología , Fosforilación/genética , Estrés Fisiológico/genética , Ubiquitina/genética
15.
J Cell Sci ; 2024 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-39421891

RESUMEN

Death-associated protein kinase-related apoptosis-inducing kinase-2 (DRAK2 or STK17B) is a serine/threonine kinase expressed in T cells. Drak2-deficient (Drak2-/-) mice respond effectively to tumors and pathogens while displaying resistance to T cell-mediated autoimmune disease. However, the molecular mechanisms by which DRAK2 impacts T cell function remain unclear. Gaining further insight into the function of DRAK2 in T cells will shed light on differentially regulated pathways in autoreactive and pathogen-specific T cells, which is critical for improving autoimmune therapies. Here, we demonstrate that DRAK2 contributes to activation of myosin light chain (MLC) in both murine and human T cells. In the absence of Drak2, the amount of polymerized actin was decreased, suggesting that DRAK2 modulates actomyosin dynamics. We further show that myosin-dependent T cell functions, such as migration, T cell receptor microcluster accumulation, and conjugation to antigen presenting cells are decreased in the absence of Drak2. These findings reveal that DRAK2 plays an important role in regulating MLC activation within T cells.

16.
Blood ; 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39316649

RESUMEN

There are few options for patients with relapse/refractory B-cell acute lymphoblastic leukemia (B-ALL), thus this is a major area of unmet medical need. Here, we reveal that inclusion of a poison exon in RBM39, which could be induced both by CDK9 or CDK9 independent CMGC (cyclin-dependent kinases, mitogen-activated protein kinases, glycogen synthase kinases, CDC-like kinases) kinase inhibition, is recognized by the nonsense-mediated mRNA decay (NMD) pathway for degradation. Targeting this poison exon in RBM39 with CMGC inhibitors lead to protein downregulation and inhibition of ALL growth, particularly in relapse/refractory B-ALL. Mechanistically, disruption of co-transcriptional splicing by inhibition of CMGC kinases including DYRK1A, or inhibition of CDK9, which phosphorylate the C-terminal domain of RNA polymerase II (Pol II), results in alteration of SF3B1 and Pol II association. Disruption of SF3B1 and transcriptional elongation complex alters Pol II pausing, which promotes the inclusion of a poison exon in RBM39. Moreover, RBM39 ablation suppresses the growth of human B-ALL, and targeting RBM39 with sulfonamides, which degrade RBM39 protein, showed strong anti-tumor activity in preclinical models. Our data reveal that relapse/refractory B-ALL is susceptible to pharmacologic and genetic inhibition of RBM39 and provide two potential strategies to target this axis.

18.
Proc Natl Acad Sci U S A ; 119(38): e2206147119, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36095192

RESUMEN

The neocortex, the center for higher brain function, first emerged in mammals and has become massively expanded and folded in humans, constituting almost half the volume of the human brain. Primary microcephaly, a developmental disorder in which the brain is smaller than normal at birth, results mainly from there being fewer neurons in the neocortex because of defects in neural progenitor cells (NPCs). Outer radial glia (oRGs), NPCs that are abundant in gyrencephalic species but rare in lissencephalic species, are thought to play key roles in the expansion and folding of the neocortex. However, how oRGs expand, whether they are necessary for neocortical folding, and whether defects in oRGs cause microcephaly remain important questions in the study of brain development, evolution, and disease. Here, we show that oRG expansion in mice, ferrets, and human cerebral organoids requires cyclin-dependent kinase 6 (CDK6), the mutation of which causes primary microcephaly via an unknown mechanism. In a mouse model in which increased Hedgehog signaling expands oRGs and intermediate progenitor cells and induces neocortical folding, CDK6 loss selectively decreased oRGs and abolished neocortical folding. Remarkably, this function of CDK6 in oRG expansion did not require its kinase activity, was not shared by the highly similar CDK4 and CDK2, and was disrupted by the mutation causing microcephaly. Therefore, our results indicate that CDK6 is conserved to promote oRG expansion, that oRGs are necessary for neocortical folding, and that defects in oRG expansion may cause primary microcephaly.


Asunto(s)
Quinasa 6 Dependiente de la Ciclina , Células Ependimogliales , Microcefalia , Neocórtex , Animales , Quinasa 6 Dependiente de la Ciclina/genética , Quinasa 6 Dependiente de la Ciclina/metabolismo , Células Ependimogliales/citología , Células Ependimogliales/enzimología , Hurones , Proteínas Hedgehog/metabolismo , Humanos , Ratones , Microcefalia/genética , Neocórtex/anomalías , Neocórtex/enzimología , Células-Madre Neurales/citología , Células-Madre Neurales/enzimología , Organoides/embriología
19.
BMC Biol ; 22(1): 122, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38807188

RESUMEN

BACKGROUND: The innate immune system serves as the first line of host defense. Transforming growth factor-ß-activated kinase 1 (TAK1) is a key regulator of innate immunity, cell survival, and cellular homeostasis. Because of its importance in immunity, several pathogens have evolved to carry TAK1 inhibitors. In response, hosts have evolved to sense TAK1 inhibition and induce robust lytic cell death, PANoptosis, mediated by the RIPK1-PANoptosome. PANoptosis is a unique innate immune inflammatory lytic cell death pathway initiated by an innate immune sensor and driven by caspases and RIPKs. While PANoptosis can be beneficial to clear pathogens, excess activation is linked to pathology. Therefore, understanding the molecular mechanisms regulating TAK1 inhibitor (TAK1i)-induced PANoptosis is central to our understanding of RIPK1 in health and disease. RESULTS: In this study, by analyzing results from a cell death-based CRISPR screen, we identified protein phosphatase 6 (PP6) holoenzyme components as regulators of TAK1i-induced PANoptosis. Loss of the PP6 enzymatic component, PPP6C, significantly reduced TAK1i-induced PANoptosis. Additionally, the PP6 regulatory subunits PPP6R1, PPP6R2, and PPP6R3 had redundant roles in regulating TAK1i-induced PANoptosis, and their combined depletion was required to block TAK1i-induced cell death. Mechanistically, PPP6C and its regulatory subunits promoted the pro-death S166 auto-phosphorylation of RIPK1 and led to a reduction in the pro-survival S321 phosphorylation. CONCLUSIONS: Overall, our findings demonstrate a key requirement for the phosphatase PP6 complex in the activation of TAK1i-induced, RIPK1-dependent PANoptosis, suggesting this complex could be therapeutically targeted in inflammatory conditions.


Asunto(s)
Fosfoproteínas Fosfatasas , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Humanos , Fosfoproteínas Fosfatasas/metabolismo , Fosfoproteínas Fosfatasas/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Quinasas Quinasa Quinasa PAM/genética , Necroptosis , Inmunidad Innata
20.
Blood ; 139(7): 1039-1051, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-34767620

RESUMEN

Human telomere biology disorders (TBD)/short telomere syndromes (STS) are heterogeneous disorders caused by inherited loss-of-function mutations in telomere-associated genes. Here, we identify 3 germline heterozygous missense variants in the RPA1 gene in 4 unrelated probands presenting with short telomeres and varying clinical features of TBD/STS, including bone marrow failure, myelodysplastic syndrome, T- and B-cell lymphopenia, pulmonary fibrosis, or skin manifestations. All variants cluster to DNA-binding domain A of RPA1 protein. RPA1 is a single-strand DNA-binding protein required for DNA replication and repair and involved in telomere maintenance. We showed that RPA1E240K and RPA1V227A proteins exhibit increased binding to single-strand and telomeric DNA, implying a gain in DNA-binding function, whereas RPA1T270A has binding properties similar to wild-type protein. To study the mutational effect in a cellular system, CRISPR/Cas9 was used to knock-in the RPA1E240K mutation into healthy inducible pluripotent stem cells. This resulted in severe telomere shortening and impaired hematopoietic differentiation. Furthermore, in patients with RPA1E240K, we discovered somatic genetic rescue in hematopoietic cells due to an acquired truncating cis RPA1 mutation or a uniparental isodisomy 17p with loss of mutant allele, coinciding with stabilized blood counts. Using single-cell sequencing, the 2 somatic genetic rescue events were proven to be independently acquired in hematopoietic stem cells. In summary, we describe the first human disease caused by germline RPA1 variants in individuals with TBD/STS.


Asunto(s)
Trastornos de Fallo de la Médula Ósea/patología , Mutación con Ganancia de Función , Heterocigoto , Síndromes Mielodisplásicos/patología , Proteína de Replicación A/genética , Acortamiento del Telómero , Telómero/genética , Adolescente , Adulto , Trastornos de Fallo de la Médula Ósea/etiología , Trastornos de Fallo de la Médula Ósea/metabolismo , Diferenciación Celular , Niño , Femenino , Humanos , Recién Nacido , Masculino , Persona de Mediana Edad , Síndromes Mielodisplásicos/etiología , Síndromes Mielodisplásicos/metabolismo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA