Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Breast Cancer Res ; 25(1): 44, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-37081516

RESUMEN

BACKGROUND: Triple-negative breast cancer (TNBC) affects young women and is the most aggressive subtype of breast cancer (BC). TNBCs disproportionally affect women of African-American (AA) descent compared to other ethnicities. We have identified DNA repair gene RAD51 as a poor prognosis marker in TNBC and its posttranscriptional regulation through microRNAs (miRNAs). This study aims to delineate the mechanisms leading to RAD51 upregulation and develop novel therapeutic combinations to effectively treat TNBCs and reduce disparity in clinical outcomes. METHODS: Analysis of TCGA data for BC cohorts using the UALCAN portal and PrognoScan identified the overexpression of RAD51 in TNBCs. miRNA sequencing identified significant downregulation of RAD51-targeting miRNAs miR-214-5P and miR-142-3P. RT-PCR assays were used to validate the levels of miRNAs and RAD51, and immunohistochemical and immunoblotting techniques were used similarly for RAD51 protein levels in TNBC tissues and cell lines. Luciferase assays were performed under the control of RAD51 3'-UTR to confirm that miR-214-5P regulates RAD51 expression. To examine the effect of miR-214-5P-mediated downregulation of RAD51 on homologous recombination (HR) in TNBC cells, Dr-GFP reporter assays were performed. To assess the levels of olaparib-induced DNA damage responses in miR-214-5P, transfected cells, immunoblots, and immunofluorescence assays were used. Furthermore, COMET assays were used to measure DNA lesions and colony assays were performed to assess the sensitivity of BRCA-proficient TNBC cells to olaparib. RESULTS: In-silico analysis identified upregulation of RAD51 as a poor prognostic marker in TNBCs. miRNA-seq data showed significant downregulation of miR-214-5P and miR-142-3P in TNBC cell lines derived from AA women compared to Caucasian-American (CA) women. miR-214-5P mimics downregulated RAD51 expression and induces HR deficiency as measured by Dr-GFP assays in these cell lines. Based on these results, we designed a combination treatment of miR-214-5P and olaparib in HR-proficient AA TNBC cell lines using clonogenic survival assays. The combination of miR-214-5P and olaparib showed synergistic lethality compared to individual treatments in these cell lines. CONCLUSIONS: Our studies identified a novel epigenetic regulation of RAD51 in TNBCs by miR-214-5P suggesting a novel combination therapies involving miR-214-5P and olaparib to treat HR-proficient TNBCs and to reduce racial disparity in therapeutic outcomes.


Asunto(s)
MicroARNs , Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Epigénesis Genética , Factores Raciales , Línea Celular Tumoral , MicroARNs/genética , Regulación Neoplásica de la Expresión Génica , Proliferación Celular/genética , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo
2.
BMC Cancer ; 23(1): 172, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36809986

RESUMEN

BACKGROUND: Dishevelled paralogs (DVL1, 2, 3) are key mediators of Wnt pathway playing a role in constitutive oncogenic signaling influencing the tumor microenvironment. While previous studies showed correlation of ß-catenin with T cell gene expression, little is known about the role of DVL2 in modulating tumor immunity. This study aimed to uncover the novel interaction between DVL2 and HER2-positive (HER2+) breast cancer (BC) in regulating tumor immunity and disease progression. METHODS: DVL2 loss of function studies were performed with or without a clinically approved HER2 inhibitor, Neratinib in two different HER2+ BC cell lines. We analyzed RNA (RT-qPCR) and protein (western blot) expression of classic Wnt markers and performed cell proliferation and cell cycle analyses by live cell imaging and flow cytometry, respectively. A pilot study in 24 HER2+ BC patients was performed to dissect the role of DVL2 in tumor immunity. Retrospective chart review on patient records and banked tissue histology were performed. Data were analyzed in SPSS (version 25) and GraphPad Prism (version 7) at a significance p < 0.05. RESULTS: DVL2 regulates the transcription of immune modulatory genes involved in antigen presentation and T cell maintenance. DVL2 loss of function down regulated mRNA expression of Wnt target genes involved in cell proliferation, migration, invasion in HER2+ BC cell lines (±Neratinib). Similarly, live cell proliferation and cell cycle analyses reveal that DVL2 knockdown (±Neratinib) resulted in reduced proliferation, higher growth arrest (G1), limited mitosis (G2/M) compared to non-targeted control in one of the two cell lines used. Analyses on patient tissues who received neoadjuvant chemotherapy (n = 14) further demonstrate that higher DVL2 expression at baseline biopsy pose a significant negative correlation with % CD8α levels (r = - 0.67, p < 0.05) while have a positive correlation with NLR (r = 0.58, p < 0.05), where high NLR denotes worse cancer prognosis. These results from our pilot study reveal interesting roles of DVL2 proteins in regulating tumor immune microenvironment and clinical predictors of survival in HER2+ BC. CONCLUSION: Our study demonstrates potential immune regulatory role of DVL2 proteins in HER2+ BC. More in-depth mechanistic studies of DVL paralogs and their influence on anti-tumor immunity may provide insight into DVLs as potential therapeutic targets benefiting BC patients.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Proteínas Dishevelled/genética , Estudios Retrospectivos , Proyectos Piloto , Vía de Señalización Wnt , Inmunidad Celular , Proliferación Celular , Microambiente Tumoral
3.
Expert Opin Emerg Drugs ; 28(4): 311-332, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38100555

RESUMEN

INTRODUCTION: Despite the recent full FDA approval of lecanemab, there is currently no disease modifying therapy (DMT) that can efficiently slow down the progression of Alzheimer's disease (AD) in the general population. This statement emphasizes the need to identify novel DMTs in the shortest time possible to prevent a global epidemic of AD cases as the world population experiences an increase in lifespan. AREAS COVERED: Here, we review several classes of anti-cancer drugs that have been or are being investigated in Phase II/III clinical trials for AD, including immunomodulatory drugs, RXR agonists, sex hormone therapies, tyrosine kinase inhibitors, and monoclonal antibodies. EXPERT OPINION: Given the overall course of brain pathologies during the progression of AD, we express a great enthusiasm for the repositioning of anti-cancer drugs as possible AD DMTs. We anticipate an increasing number of combinatorial therapy strategies to tackle AD symptoms and their underlying pathologies. However, we strongly encourage improvements in clinical trial study designs to better assess target engagement and possible efficacy over sufficient periods of drug exposure.


Asunto(s)
Enfermedad de Alzheimer , Antineoplásicos , Reposicionamiento de Medicamentos , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Anticuerpos Monoclonales/uso terapéutico , Antineoplásicos/uso terapéutico
4.
EMBO Rep ; 22(6): e50600, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-33860601

RESUMEN

Dishevelled (DVL) critically regulates Wnt signaling and contributes to a wide spectrum of diseases and is important in normal and pathophysiological settings. However, how it mediates diverse cellular functions remains poorly understood. Recent discoveries have revealed that constitutive Wnt pathway activation contributes to breast cancer malignancy, but the mechanisms by which this occurs are unknown and very few studies have examined the nuclear role of DVL. Here, we have performed DVL3 ChIP-seq analyses and identify novel target genes bound by DVL3. We show that DVL3 depletion alters KMT2D binding to novel targets and changes their epigenetic marks and mRNA levels. We further demonstrate that DVL3 inhibition leads to decreased tumor growth in two different breast cancer models in vivo. Our data uncover new DVL3 functions through its regulation of multiple genes involved in developmental biology, antigen presentation, metabolism, chromatin remodeling, and tumorigenesis. Overall, our study provides unique insight into the function of nuclear DVL, which helps to define its role in mediating aberrant Wnt signaling.


Asunto(s)
Neoplasias , Vía de Señalización Wnt , Proteínas Dishevelled/genética , Proteínas Dishevelled/metabolismo , Humanos , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Vía de Señalización Wnt/genética
5.
Int J Mol Sci ; 24(1)2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36614200

RESUMEN

Breast cancer (BC) is primarily triggered by estrogens, especially 17ß-estradiol (E2), which are synthesized by the aromatase enzyme. While all steroid hormones are derived from cholesterol, the rate-limiting step in steroid biosynthesis is mediated by the steroidogenic acute regulatory (StAR) protein. Herein, we demonstrate that StAR mRNA expression was aberrantly high in human hormone-dependent BC (MCF7, MDA-MB-361, and T-47D), modest in hormone-independent triple negative BC (TNBC; MDA-MB-468, BT-549, and MDA-MB-231), and had little to none in non-cancerous mammary epithelial (HMEC, MCF10A, and MCF12F) cells. In contrast, these cell lines showed abundant expression of aromatase (CYP19A1) mRNA. Immunofluorescence displayed qualitatively similar patterns of both StAR and aromatase expression in various breast cells. Additionally, three different transgenic (Tg) mouse models of spontaneous breast tumors, i.e., MMTV-Neu, MMTV-HRAS, and MMTV-PyMT, demonstrated markedly higher expression of StAR mRNA/protein in breast tumors than in normal mammary tissue. While breast tumors in these mouse models exhibited higher expression of ERα, ERß, and PR mRNAs, their levels were undetected in TNBC tumors. Accumulation of E2 in plasma and breast tissues, from MMTV-PyMT and non-cancerous Tg mice, correlated with StAR, but not with aromatase, signifying the importance of StAR in governing E2 biosynthesis in mammary tissue. Treatment with a variety of histone deacetylase inhibitors (HDACIs) in primary cultures of enriched breast tumor epithelial cells, from MMTV-PyMT mice, resulted in suppression of StAR and E2 levels. Importantly, inhibition of StAR, concomitant with E2 synthesis, by various HDACIs, at clinical and preclinical doses, in MCF7 cells, indicated therapeutic relevance of StAR in hormone-dependent BCs. These findings provide insights into the molecular events underlying the differential expression of StAR in human and mouse cancerous and non-cancerous breast cells/tissues, highlighting StAR could serve not only as a novel diagnostic maker but also as a therapeutic target for the most prevalent hormone-sensitive BCs.


Asunto(s)
Neoplasias de la Mama , Neoplasias Mamarias Animales , Neoplasias de la Mama Triple Negativas , Humanos , Ratones , Animales , Femenino , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Aromatasa/genética , Aromatasa/metabolismo , Estradiol , Neoplasias Mamarias Animales/patología , Ratones Transgénicos , ARN Mensajero/genética
6.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36768217

RESUMEN

The complement system is an important component of transplant rejection. Sertoli cells, an immune regulatory testicular cell, survive long-term when transplanted across immunological barriers; thus, understanding the mechanisms behind this unique survival would be of great benefit to the transplantation field. This study focused on Sertoli cell inhibition of complement as relevant in xenotransplantation. Neonatal pig Sertoli cells (NPSCs) survived activated human complement in vitro while neonatal pig islet (NPI) aggregates and pig aortic endothelial cell (PAEC) survival were diminished to about 65% and 12%, respectively. PAECs cultured in NPSC-conditioned media and human complement demonstrated a 200% increase in survival suggesting that NPSCs secrete complement-inhibiting substances that confer protection. Bioinformatic and molecular analyses identified 21 complement inhibitors expressed by NPSCs with several significantly increased in NPSCs compared to NPIs or PAECs. Lastly, RNA sequencing revealed that NPSCs express 25 other complement factors including cascade components and receptors. Overall, this study identified the most comprehensive Sertoli cell complement signature to date and indicates that the expression of a variety of complement inhibitors ensures a proper regulation of complement through redundant inhibition points. Understanding the regulation of the complement system should be further investigated for extending xenograft viability.


Asunto(s)
Proteínas del Sistema Complemento , Rechazo de Injerto , Células de Sertoli , Humanos , Masculino , Inactivadores del Complemento , Proteínas del Sistema Complemento/metabolismo , Rechazo de Injerto/metabolismo , Xenoinjertos , Células de Sertoli/metabolismo , Trasplante Heterólogo , Porcinos , Animales
7.
Ann Surg Oncol ; 29(5): 2914-2925, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35094188

RESUMEN

BACKGROUND: Morphological evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer is gaining momentum as an immunological biomarker. This experiment evaluates the role of TILs in distant tumors as a measure of abscopal effect from cryoablation of breast cancer. METHODS: BALB/c mice underwent bilateral orthotopic transplant with 4T1-12B (triple-negative) cells. At 2 weeks, left tumors were treated by either resection (standard of care group) or cryoablation (intervention group) followed by resection of the distant right tumors 1 week posttreatment. TIL scores were calculated from hematoxylin and eosin-stained sections and phenotyped for cytotoxic T-lymphocyte (CTL) markers by immunofluorescence. Primarily resected tumors served as baseline (Tbaseline), whereas resected distant right-sided served as the readout for abscopal effect (AbsRes or AbsCryo). Mice were monitored for tumor recurrence and metastasis. RESULTS: The AbsCryo had a significant mean (SD) increase in stromal (2.8 [1.1]%; p = 0.015) and invasive margin TILs (50 [12]%; p = 0.02) compared with TBaseline (1.0 [0]% and 31 [4.9]%, respectively). CTL phenotyping revealed a significant increase in mean (SD) CD8+ T cells (15.7 [12.1]; p = 0.02) and granzyme B (4.8 [3.6]; p = 0.048) for the AbsCryo compared with TBaseline (5.2 [4.7] and 2.4 [0.9], respectively). Posttreatment, the cryoablation group had no recurrence or metastasis, whereas the resected group showed local recurrence and lung metastasis in 40% of the mice. Postprocedure increase in TIL score of distant tumors was associated with decrease in tumor relapse (p = 0.02). CONCLUSIONS: Cryoablation induced a robust tumor-specific TIL response compared with resection, suggesting an abscopal effect leading to the prevention of cancer recurrence and metastasis.


Asunto(s)
Neoplasias de la Mama , Criocirugía , Neoplasias de la Mama Triple Negativas , Animales , Biomarcadores , Neoplasias de la Mama/patología , Linfocitos T CD8-positivos/patología , Femenino , Humanos , Linfocitos Infiltrantes de Tumor , Ratones , Recurrencia Local de Neoplasia/patología , Recurrencia Local de Neoplasia/cirugía , Proyectos Piloto , Pronóstico , Neoplasias de la Mama Triple Negativas/patología
8.
Biochem J ; 478(21): 3957-3976, 2021 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-34704597

RESUMEN

Metabolic reprogramming in cancer necessitates increased amino acid uptake, which is accomplished by up-regulation of specific amino acid transporters. However, not all tumors rely on any single amino acid transporter for this purpose. Here, we report on the differential up-regulation of the amino acid transporter SLC38A5 in triple-negative breast cancer (TNBC). The up-regulation is evident in TNBC tumors, conventional and patient-derived xenograft TNBC cell lines, and a mouse model of spontaneous TNBC mammary tumor. The up-regulation is confirmed by functional assays. SLC38A5 is an amino acid-dependent Na+/H+ exchanger which transports Na+ and amino acids into cells coupled with H+ efflux. Since cell-surface Na+/H+ exchanger is an established inducer of macropinocytosis, an endocytic process for cellular uptake of bulk fluid and its components, we examined the impact of SLC38A5 on macropinocytosis in TNBC cells. We found that the transport function of SLC38A5 is coupled to the induction of macropinocytosis. Surprisingly, the transport function of SLC38A5 is inhibited by amilorides, the well-known inhibitors of Na+/H+ exchanger. Down-regulation of SLC38A5 in TNBC cells attenuates serine-induced macropinocytosis and reduces cell proliferation significantly as assessed by multiple methods, but does not induce cell death. The Cancer Genome Atlas database corroborates SLC38A5 up-regulation in TNBC. This represents the first report on the selective expression of SLC38A5 in TNBC and its role as an inducer of macropinocytosis, thus revealing a novel, hitherto unsuspected, function for an amino acid transporter that goes beyond amino acid delivery but is still relevant to cancer cell nutrition and proliferation.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros/fisiología , Neoplasias de la Mama Triple Negativas/metabolismo , Animales , Transporte Biológico , Línea Celular Tumoral , Endocitosis , Femenino , Humanos , Ratones , Ratones Transgénicos
9.
Mol Cell Biochem ; 476(6): 2449-2464, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33599895

RESUMEN

The regulation of aromatase, an enzyme involved in the biosynthesis of estrogen in normal and cancer cells, has been associated with growth factor signaling and immune response modulation. The tissue-specific regulatory roles of these factors are of particular importance as local aromatase expression is strongly linked to cancer development/progression and disease outcomes in patients. Therefore, aromatase has become a chemotherapeutic target and aromatase inhibitors (AIs) are used in the clinic for treating hormone-dependent cancers. Although AIs have shown promising results in the treatment of cancers, the emerging increase in AI-resistance necessitates the development of new and improved targeted therapies. This review discusses the role of tumor and stromal-derived growth factors and immune cell modulators in regulating aromatase. Current single-agent and combination therapies with or without AIs targeting growth factors and immune checkpoints are also discussed. This review highlights recent studies that show new connections between growth factors, mediators of immune response, and aromatase regulation.


Asunto(s)
Aromatasa/inmunología , Proteínas de Neoplasias/inmunología , Neoplasias/inmunología , Animales , Aromatasa/metabolismo , Inhibidores de la Aromatasa/uso terapéutico , Humanos , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología
10.
Int J Mol Sci ; 21(21)2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33126517

RESUMEN

The Wnt pathway is an integral cell-to-cell signaling hub which regulates crucial development processes and maintenance of tissue homeostasis by coordinating cell proliferation, differentiation, cell polarity, cell movement, and stem cell renewal. When dysregulated, it is associated with various developmental diseases, fibrosis, and tumorigenesis. We now better appreciate the complexity and crosstalk of the Wnt pathway with other signaling cascades. Emerging roles of the Wnt signaling in the cancer stem cell niche and drug resistance have led to development of therapeutics specifically targeting various Wnt components, with some agents currently in clinical trials. This review highlights historical and recent findings on key mediators of Wnt signaling and how they impact antitumor immunity and maintenance of cancer stem cells. This review also examines current therapeutics being developed that modulate Wnt signaling in cancer and discusses potential shortcomings associated with available therapeutics.


Asunto(s)
Carcinogénesis , Autorrenovación de las Células , Redes Reguladoras de Genes , Neoplasias/patología , Vía de Señalización Wnt , Animales , Humanos , Neoplasias/metabolismo
11.
Biochem Biophys Res Commun ; 509(2): 476-482, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30595381

RESUMEN

Dysregulation of steroid biosynthesis has been implicated in the pathophysiology of a variety of cancers. One such common malignancy in women is breast cancer that is frequently promoted by estrogen overproduction. All steroid hormones are made from cholesterol, and the rate-limiting step in steroid biosynthesis is primarily mediated by the steroidogenic acute regulatory (StAR) protein. Whereas the involvement of StAR in the regulation steroid hormone biosynthesis is well established, its association to breast cancer remains obscure. Herein, we report that estrogen receptor positive breast cancer cell lines (MCF7, MDA-MB-361, and T-47D) displayed aberrant high expression of the StAR protein, concomitant with 17ß-estradiol (E2) synthesis, when compared their levels with normal mammary epithelial (MCF10A and MCF12F) and triple negative breast cancer (MDA-MB-468, MDA-MB-231, and BT-549) cells. StAR was identified as a novel acetylated protein in MCF7 cells, in which liquid chromatography-tandem mass spectrometry analysis identified seven StAR acetyl lysine residues under basal and in response to histone deacetylase (HDAC) inhibition. A number of HDAC inhibitors were capable of diminishing StAR expression and E2 synthesis in MCF7 cells. The validity of StAR protein acetylation and its correlation to HDAC inhibition mediated steroid synthesis was demonstrated in adrenocortical tumor H295R cells. These findings provide novel insights that StAR protein is abundantly expressed in the most prevalent hormone sensitive breast cancer subtype, wherein inhibition of HDACs altered StAR acetylation patterns and decreased E2 levels, which may have important therapeutic implications in the prevention and treatment of this devastating disease.


Asunto(s)
Neoplasias de la Mama/patología , Fosfoproteínas/análisis , Acetilación/efectos de los fármacos , Mama/efectos de los fármacos , Mama/patología , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Estrógenos/análisis , Femenino , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Células MCF-7 , Regulación hacia Arriba/efectos de los fármacos
12.
Biochem Cell Biol ; 95(3): 368-378, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28177766

RESUMEN

Ever since the first report that mutations in methyl-CpG-binding protein 2 (MeCP2) causes Rett syndrome (RTT), a severe neurological disorder in females world-wide, there has been a keen interest to gain a comprehensive understanding of this protein. While the classical model associated with MeCP2 function suggests its role in gene suppression via recruitment of co-repressor complexes and histone deacetylases to methylated CpG-sites, recent discoveries have brought to light its role in transcription activation, modulation of RNA splicing, and chromatin compaction. Various post-translational modifications (PTMs) of MeCP2 further increase its functional versatility. Involvement of MeCP2 in pathologies other than RTT, such as tumorigenesis however, remains poorly explored and understood. This review provides a survey of the literature implicating MeCP2 in breast, colon and prostate cancer.


Asunto(s)
Neoplasias de la Mama/fisiopatología , Neoplasias del Colon/fisiopatología , Proteína 2 de Unión a Metil-CpG/metabolismo , Neoplasias de la Próstata/fisiopatología , Síndrome de Rett/fisiopatología , Femenino , Humanos , Masculino
13.
Nat Genet ; 39(2): 237-42, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17211412

RESUMEN

Adult cancers may derive from stem or early progenitor cells. Epigenetic modulation of gene expression is essential for normal function of these early cells but is highly abnormal in cancers, which often show aberrant promoter CpG island hypermethylation and transcriptional silencing of tumor suppressor genes and pro-differentiation factors. We find that for such genes, both normal and malignant embryonic cells generally lack the hypermethylation of DNA found in adult cancers. In embryonic stem cells, these genes are held in a 'transcription-ready' state mediated by a 'bivalent' promoter chromatin pattern consisting of the repressive mark, histone H3 methylated at Lys27 (H3K27) by Polycomb group proteins, plus the active mark, methylated H3K4. However, embryonic carcinoma cells add two key repressive marks, dimethylated H3K9 and trimethylated H3K9, both associated with DNA hypermethylation in adult cancers. We hypothesize that cell chromatin patterns and transient silencing of these important regulatory genes in stem or progenitor cells may leave these genes vulnerable to aberrant DNA hypermethylation and heritable gene silencing during tumor initiation and progression.


Asunto(s)
Cromatina/metabolismo , Metilación de ADN , Genes Supresores de Tumor , Células Madre/metabolismo , Adulto , Proliferación Celular , Células Madre Embrionarias/metabolismo , Silenciador del Gen , Histonas/metabolismo , Humanos , Proteínas del Grupo Polycomb , Regiones Promotoras Genéticas , Proteínas Represoras/metabolismo , Células Tumorales Cultivadas
14.
Biochem Biophys Res Commun ; 464(1): 312-7, 2015 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-26119689

RESUMEN

Removal of cholesterol from macrophage-derived foam cells is a critical step to the prevention of atherosclerotic lesions. We have recently demonstrated the functional importance of retinoids in the regulation of the steroidogenic acute regulatory (StAR) protein that predominantly mediates the intramitochondrial transport of cholesterol in target tissues. In the present study, treatment of mouse macrophages with retinoids, particularly all-trans retinoic acid (atRA) and 9-cis RA, resulted in increases in cholesterol efflux to apolipoprotein AI (Apo-A1). Activation of the PKA pathway by a cAMP analog, (Bu)2cAMP, markedly augmented retinoid mediated cholesterol efflux. Macrophages overexpressing hormone-sensitive lipase increased the hydrolysis of cholesteryl esters and concomitantly enhanced the efficacy of retinoic acid receptor and liver X receptor (LXR) ligands on StAR and ATP-binding cassette transporter A1 (ABCA1) protein levels. RAs elevated StAR promoter activity in macrophages, and an increase in StAR levels augmented cholesterol efflux to Apo-A1, suggesting retinoid-mediated efflux of cholesterol involves enhanced oxysterol production. Further studies revealed that retinoids activate the LXR regulated genes, sterol receptor-element binding protein-1c and ABCA1. These findings provide insights into the regulatory events in which retinoid signaling effectively enhances macrophage cholesterol efflux and indicate that retinoid therapy may have important implications in limiting and/or regressing atherosclerotic cardiovascular disease.


Asunto(s)
Colesterol/metabolismo , Macrófagos/efectos de los fármacos , Receptores Nucleares Huérfanos/agonistas , Tretinoina/análogos & derivados , Tretinoina/farmacología , Transportador 1 de Casete de Unión a ATP/genética , Transportador 1 de Casete de Unión a ATP/metabolismo , Animales , Apolipoproteína A-I/metabolismo , Transporte Biológico/efectos de los fármacos , Bucladesina/farmacología , Línea Celular , Ésteres del Colesterol/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Regulación de la Expresión Génica , Hidrólisis/efectos de los fármacos , Receptores X del Hígado , Macrófagos/citología , Macrófagos/metabolismo , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Receptores Nucleares Huérfanos/genética , Receptores Nucleares Huérfanos/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Receptores de Ácido Retinoico/genética , Receptores de Ácido Retinoico/metabolismo , Transducción de Señal , Esterol Esterasa/genética , Esterol Esterasa/metabolismo
15.
Int J Mol Sci ; 16(1): 950-65, 2015 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-25569080

RESUMEN

SIRT1, an NAD(+)-dependent deacetylase, has been described in the literature as a major player in the regulation of cellular stress responses. Its expression has been shown to be altered in cancer cells, and it targets both histone and non-histone proteins for deacetylation and thereby alters metabolic programs in response to diverse physiological stress. Interestingly, many of the metabolic pathways that are influenced by SIRT1 are also altered in tumor development. Not only does SIRT1 have the potential to regulate oncogenic factors, it also orchestrates many aspects of metabolism and lipid regulation and recent reports are beginning to connect these areas. SIRT1 influences pathways that provide an alternative means of deriving energy (such as fatty acid oxidation and gluconeogenesis) when a cell encounters nutritive stress, and can therefore lead to altered lipid metabolism in various pathophysiological contexts. This review helps to show the various connections between SIRT1 and major pathways in cellular metabolism and the consequence of SIRT1 deregulation on carcinogenesis and lipid metabolism.


Asunto(s)
Metabolismo de los Lípidos/fisiología , Neoplasias/patología , Sirtuina 1/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Metabolismo Energético , Ácidos Grasos/biosíntesis , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/metabolismo , Humanos , Neoplasias/metabolismo , PPAR gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Factores de Transcripción/metabolismo
16.
Cells ; 13(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38920682

RESUMEN

Neuroplasticity in the amygdala and its central nucleus (CeA) is linked to pain modulation and pain behaviors, but cellular mechanisms are not well understood. Here, we addressed the role of small-conductance Ca2+-activated potassium (SK) channels in pain-related amygdala plasticity. The facilitatory effects of the intra-CeA application of an SK channel blocker (apamin) on the pain behaviors of control rats were lost in a neuropathic pain model, whereas an SK channel activator (NS309) inhibited pain behaviors in neuropathic rats but not in sham controls, suggesting the loss of the inhibitory behavioral effects of amygdala SK channels. Brain slice electrophysiology found hyperexcitability of CeA neurons in the neuropathic pain condition due to the loss of SK channel-mediated medium afterhyperpolarization (mAHP), which was accompanied by decreased SK2 channel protein and mRNA expression, consistent with a pretranscriptional mechanisms. The underlying mechanisms involved the epigenetic silencing of the SK2 gene due to the increased DNA methylation of the CpG island of the SK2 promoter region and the change in methylated CpG sites in the CeA in neuropathic pain. This study identified the epigenetic dysregulation of SK channels in the amygdala (CeA) as a novel mechanism of neuropathic pain-related plasticity and behavior that could be targeted to control abnormally enhanced amygdala activity and chronic neuropathic pain.


Asunto(s)
Amígdala del Cerebelo , Epigénesis Genética , Neuralgia , Canales de Potasio de Pequeña Conductancia Activados por el Calcio , Animales , Masculino , Ratas , Amígdala del Cerebelo/metabolismo , Amígdala del Cerebelo/fisiopatología , Conducta Animal/efectos de los fármacos , Metilación de ADN/genética , Neuralgia/metabolismo , Neuralgia/genética , Neuralgia/fisiopatología , Neuronas/metabolismo , Ratas Sprague-Dawley , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/genética
17.
Proc Natl Acad Sci U S A ; 107(20): 9216-21, 2010 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-20439735

RESUMEN

Sirtuin 1 (SIRT1) is a class III histone deacetylase that deacetylates histone and nonhistone proteins to regulate gene transcription and protein function. Because SIRT1 regulates very diverse responses such as apoptosis, insulin sensitivity, autophagy, differentiation, and stem cell pluripotency, it has been a challenge to reconcile how it orchestrates such pleiotropic effects. Here we show that SIRT1 serves as an important regulator of Wnt signaling. We demonstrate that SIRT1 loss of function leads to a significant decrease in the levels of all three Dishevelled (Dvl) proteins. Furthermore, we demonstrate that SIRT1 and Dvl proteins complex in vivo and that inhibition of SIRT1 leads to changes in gene expression of Wnt target genes. Finally, we demonstrate that Wnt-stimulated cell migration is inhibited by a SIRT1 inhibitor. Because the three mammalian Dvl proteins serve as key messengers for as many as 19 Wnt ligands, SIRT1-mediated regulation of Dvl proteins may explain the diverse physiological responses observed in different cellular contexts. Previously, SIRT1 had only been shown to mediate the epigenetic silencing of Wnt antagonists. In contrast, here we report that SIRT1 regulates Dvl protein levels and Wnt signaling in several cellular contexts. These findings demonstrate that SIRT1 is a regulator of transient and constitutive Wnt signaling.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Regulación de la Expresión Génica/fisiología , Fosfoproteínas/metabolismo , Transducción de Señal/fisiología , Sirtuina 1/metabolismo , Proteínas Wnt/metabolismo , Western Blotting , Línea Celular , Movimiento Celular/fisiología , Cartilla de ADN/genética , Proteínas Dishevelled , Regulación de la Expresión Génica/genética , Humanos , Inmunoprecipitación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
18.
Biomedicines ; 11(6)2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37371745

RESUMEN

Transplantation is a clinical procedure that treats a variety of diseases yet is unattainable for many patients due to a nationwide organ shortage and the harsh side effects of chronic immune suppression. Xenografted pig organs are an attractive alternative to traditional allografts and would provide an endless supply of transplantable tissue, but transplants risk rejection by the recipient's immune system. An essential component of the rejection immune response is the complement system. Sertoli cells, an immunoregulatory testicular cell, survive complement as xenografts long term without any immune suppressants. We hypothesized that exposure to the xenogeneic complement influences Sertoli cell gene expression of other accommodation factors that contribute to their survival; thus, the purpose of this study was to describe these potential changes in gene expression. RNA sequencing of baseline neonatal pig Sertoli cells (NPSC) as compared to NPSC after exposure to normal human serum (NHS, containing complement) revealed 62 significantly differentially expressed genes (DEG) that affect over 30 pathways involved in immune regulation, cell survival, and transplant accommodation. Twelve genes of interest were selected for further study, and Sertoli cell protein expression of CCL2 and the accommodation factor A20 were confirmed for the first time. Functional pathway analyses were conducted in NPSC and three biological clusters were revealed as being considerably affected by NHS exposure: innate immune signaling, cytokine signaling, and T cell regulation. Better understanding of the interaction of Sertoli cells with complement in a xenograft environment may reveal the mechanisms behind immune-privileged systems to increase graft viability.

19.
bioRxiv ; 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37292919

RESUMEN

Despite the progress made in identifying cellular factors and mechanisms that predict progression and metastasis, breast cancer remains the second leading cause of death for women in the US. Using The Cancer Genome Atlas and mouse models of spontaneous and invasive mammary tumorigenesis, we identified that loss of function of interferon regulatory factor 5 (IRF5) is a predictor of metastasis and survival. Histologic analysis of Irf5 -/- mammary glands revealed expansion of luminal and myoepithelial cells, loss of organized glandular structure, and altered terminal end budding and migration. RNA-seq and ChIP-seq analyses of primary mammary epithelial cells from Irf5 +/+ and Irf5 -/- littermate mice revealed IRF5-mediated transcriptional regulation of proteins involved in ribosomal biogenesis. Using an invasive model of breast cancer lacking Irf5 , we demonstrate that IRF5 re-expression inhibits tumor growth and metastasis via increased trafficking of tumor infiltrating lymphocytes and altered tumor cell protein synthesis. These findings uncover a new function for IRF5 in the regulation of mammary tumorigenesis and metastasis. Highlights: Loss of IRF5 is a predictor of metastasis and survival in breast cancer.IRF5 contributes to the regulation of ribosome biogenesis in mammary epithelial cells.Loss of IRF5 function in mammary epithelial cells leads to increased protein translation.

20.
J Cell Biol ; 221(12)2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36383195

RESUMEN

Dishevelled exerts a molecular force that guides cell fate, but how it does so remains enigmatic. In this issue, Kang et al. (2022. J. Cell Biol.https://doi.org/10.1083/jcb.202205069) show Dvl2 undergoes liquid-liquid phase separation to stabilize ß-catenin by pulling Axin into its biomolecular condensate at the plasma membrane.


Asunto(s)
Proteína Axina , Proteínas Dishevelled , beta Catenina , Proteína Axina/genética , Proteína Axina/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Proteínas Dishevelled/genética , Proteínas Dishevelled/metabolismo , Vía de Señalización Wnt , Complejo de Señalización de la Axina , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA