Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Chemistry ; : e202402578, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39054904

RESUMEN

In this contribution we report on a novel approach towards luminescent light-responsive ligands. To this end, cyanostilbene- guanidiniocarbonyl-pyrrole hybrids were designed and investigated. Merging of a luminophore with a supramolecular bioactive ligand bears numerous advantages by overcoming the typical drawbacks of drug-labelling, influencing the overall performance of the active species by attachment of a large luminophore. Here we were able to establish a simple and easily accessible synthesis route to different cyanostyryl-guanidininiocarbonyl-pyrrole (CGCP) derivatives. These compounds were investigated regarding their light-responsive double bond isomerisation, their molecular structures in single crystals by means of X-ray diffractometry, their emission properties by state of the art photophysical characterisation as well as bioimaging and assessment of cell toxicity.

2.
Molecules ; 29(11)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38893345

RESUMEN

Among brain tumors, glioblastoma (GBM) is very challenging to treat as chemotherapeutic drugs can only penetrate the brain to a limited extent due to the blood-brain barrier (BBB). Nanoparticles can be an attractive solution for the treatment of GBM as they can transport drugs across the BBB into the tumor. In this study, normal and GBM organoids comprising six brain cell types were developed and applied to study the uptake, BBB penetration, distribution, and efficacy of fluorescent, ultrasmall gold nanoparticles (AuTio-Dox-AF647s) conjugated with doxorubicin (Dox) and AlexaFluor-647-cadaverine (AF647) by confocal laser scanning microscopy (CLSM), using a mixture of dissolved doxorubicin and fluorescent AF647 molecules as a control. It was shown that the nanoparticles could easily penetrate the BBB and were found in normal and GBM organoids, while the dissolved Dox and AF647 molecules alone were unable to penetrate the BBB. Flow cytometry showed a reduction in glioblastoma cells after treatment with AuTio-Dox nanoparticles, as well as a higher uptake of these nanoparticles by GBM cells in the GBM model compared to astrocytes in the normal cell organoids. In summary, our results show that ultrasmall gold nanoparticles can serve as suitable carriers for the delivery of drugs into organoids to study BBB function.


Asunto(s)
Barrera Hematoencefálica , Doxorrubicina , Glioblastoma , Oro , Nanopartículas del Metal , Organoides , Doxorrubicina/farmacología , Doxorrubicina/química , Doxorrubicina/farmacocinética , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patología , Nanopartículas del Metal/química , Oro/química , Humanos , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Organoides/efectos de los fármacos , Organoides/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral
3.
Inorg Chem ; 62(42): 17470-17485, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37820300

RESUMEN

Alloyed ultrasmall silver-platinum nanoparticles (molar ratio Ag:Pt = 50:50) were prepared and compared to pure silver, platinum, and gold nanoparticles, all with a metallic core diameter of 2 nm. They were surface-stabilized by a layer of glutathione (GSH). A comprehensive characterization by high-resolution transmission electron microscopy (HRTEM), electron diffraction (ED), X-ray diffraction (XRD), small-angle X-ray scattering (SAXS), differential centrifugal sedimentation (DCS), and UV spectroscopy showed their size both in the dry and in the water-dispersed state (hydrodynamic diameter). Solution NMR spectroscopy (1H, 13C, COSY, HSQC, HMBC, and DOSY) showed the nature of the glutathione shell including the number of GSH ligands on each nanoparticle (about 200 with a molecular footprint of 0.063 nm2 each). It furthermore showed that there are at least two different positions for the GSH ligand on the gold nanoparticle surface. Platinum strongly reduced the resolution of the NMR spectra compared to silver and gold, also in the alloyed nanoparticles. X-ray photoelectron spectroscopy (XPS) showed that silver, platinum, and silver-platinum particles were at least partially oxidized to Ag(+I) and Pt(+II), whereas the gold nanoparticles showed no sign of oxidation. Platinum and gold nanoparticles were well crystalline but twinned (fcc lattice) despite the small particle size. Silver was crystalline in electron diffraction but not in X-ray diffraction. Alloyed silver-platinum nanoparticles were almost fully amorphous by both methods, indicating a considerable internal disorder.

4.
Inorg Chem ; 61(12): 5133-5147, 2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35285631

RESUMEN

Ultrasmall nanoparticles of platinum group metal oxides (core diameter of about 1.8 nm) were prepared by alkaline hydrolysis of metal precursors in the presence of NaBH4 and by colloidal stabilization with tripeptide glutathione. We obtained water-dispersed nanoparticles of Rh2O3, PdO, RuO2, IrO2, Os/OsO2, and Pt/PtO. Their size was probed using high-resolution transmission electron microscopy, differential centrifugal sedimentation, small-angle X-ray scattering, and diffusion-ordered 1H NMR spectroscopy (1H DOSY). Their oxidation state was clearly determined using X-ray photoelectron spectroscopy, X-ray powder diffraction, and electron diffraction. The chemical composition of the nanoparticles, that is, the ratio of the metal oxide core and glutathione capping agent, was quantitatively determined by a combination of these methods.


Asunto(s)
Nanopartículas del Metal , Óxidos , Nanopartículas del Metal/química , Óxidos/química , Platino (Metal)/química , Agua/química , Difracción de Rayos X
5.
Chemistry ; 27(4): 1451-1464, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-32959929

RESUMEN

Ultrasmall gold nanoparticles (diameter about 2 nm) were surface-functionalized with cysteine-carrying precision macromolecules. These consisted of sequence-defined oligo(amidoamine)s (OAAs) with either two or six cysteine molecules for binding to the gold surface and either with or without a PEG chain (3400 Da). They were characterized by 1 H NMR spectroscopy, 1 H NMR diffusion-ordered spectroscopy (DOSY), small-angle X-ray scattering (SAXS), and high-resolution transmission electron microscopy. The number of precision macromolecules per nanoparticle was determined after fluorescent labeling by UV spectroscopy and also by quantitative 1 H NMR spectroscopy. Each nanoparticle carried between 40 and 100 OAA ligands, depending on the number of cysteine units per OAA. The footprint of each ligand was about 0.074 nm2 per cysteine molecule. OAAs are well suited to stabilize ultrasmall gold nanoparticles by selective surface conjugation and can be used to selectively cover their surface. The presence of the PEG chain considerably increased the hydrodynamic diameter of both dissolved macromolecules and macromolecule-conjugated gold nanoparticles.

6.
J Mater Sci Mater Med ; 31(11): 102, 2020 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-33140175

RESUMEN

Porous scaffolds of poly(lactide-co-glycolide) (PLGA; 85:15) and nano-hydroxyapatite (nHAP) were prepared by an emulsion-precipitation procedure from uniform PLGA-nHAP spheres (150-250 µm diameter). These spheres were then thermally sintered at 83 °C to porous scaffolds that can serve for bone tissue engineering or for bone substitution. The base materials PLGA and nHAP and the PLGA-nHAP scaffolds were extensively characterized by X-ray powder diffraction, infrared spectroscopy, thermogravimetry, differential scanning calorimetry, and scanning electron microscopy. The scaffold porosity was about 50 vol% as determined by relating mass and volume of the scaffolds, together with the computed density of the solid phase (PLGA-nHAP). The cultivation of HeLa cells demonstrated their high cytocompatibility. In combination with DNA-loaded calcium phosphate nanoparticles, they showed a good activity of gene transfection with enhanced green fluorescent protein (EGFP) as model protein. This is expected enhance bone growth around an implanted scaffold or inside a scaffold for tissue engineering.


Asunto(s)
Huesos/metabolismo , Fosfatos de Calcio/química , ADN/química , Durapatita/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Ingeniería de Tejidos/instrumentación , Andamios del Tejido , Anisotropía , Calcio/química , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Microscopía Electrónica de Rastreo , Microesferas , Nanopartículas/química , Porosidad , Solventes , Temperatura , Termogravimetría , Ingeniería de Tejidos/métodos , Difracción de Rayos X
7.
Chemistry ; 24(36): 9051-9060, 2018 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-29522654

RESUMEN

Spherical bimetallic AgAu nanoparticles in the molar ratios 30:70, 50:50, and 70:30 with diameters of 30 to 40 nm were analyzed together with pure silver and gold nanoparticles of the same size. Dynamic light scattering (DLS) and differential centrifugal sedimentation (DCS) were used for size determination. Cyclic voltammetry (CV) was used to determine the nanoalloy composition, together with atomic absorption spectroscopy (AAS), energy-dispersive X-ray spectroscopy (EDX) and ultraviolet-visible (UV/Vis) spectroscopy. Underpotential deposition (UPD) of lead (Pb) on the particle surface gave information about its spatial elemental distribution and surface area. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM) were applied to study the shape and the size of the nanoparticles. X-ray powder diffraction gave the crystallite size and the microstrain. The particles form a solid solution (alloy) with an enrichment of silver on the nanoparticle surface, including some silver-rich patches. UPD indicated that the surface only consists of silver atoms.

8.
J Mater Sci Mater Med ; 28(3): 52, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28197825

RESUMEN

Thermal evolution of amorphous calcium phosphate (ACP) powder from a fast nitrate synthesis with a Ca/P ratio of 1:1 were studied in the range of 20-980 °C. The powder consisted of amorphous dicalcium phosphate anhydrate (CaHPO4) after heating to 200 °C. CaHPO4 gradually condensed to amorphous calcium pyrophosphate Ca2P2O7 (CPP) between 200 to 620 °C. Amorphous CPP crystallized at 620-740 °C to a metastable polymorph α'-CPP of the high-temperature phase α-CPP and ß-CPP. The α'-CPP/ ß-CPP phase ratio reached a maximum at 800 °C (60 wt% α'-CPP/40 wt% ß-CPP), and α'-CPP gradually transformed to ß-CPP at a higher temperature. Some ß-TCP occurred at 900 °C, so that a three-phasic mixture was obtained in the powder heated to 980 °C. The occurrence of metastable α'-CPP is attributed to Ostwald's step rule, and a mechanism for ß-TCP formation is proposed. The advantages of prospective biomaterials from these powders are discussed.


Asunto(s)
Fosfatos de Calcio/química , Calcio/química , Fósforo/química , Materiales Biocompatibles/química , Cristalización , Calor , Concentración de Iones de Hidrógeno , Rayos Infrarrojos , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Polvos , Temperatura , Difracción de Rayos X
9.
J Dtsch Dermatol Ges ; 14(6): 604-10, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27240067

RESUMEN

HINTERGRUND UND ZIELE: Obwohl Tätowierungen in den letzten Jahren außerordentlich beliebt geworden sind, wurde in der Literatur bisher nur über wenige Fälle schwerer Reaktionen berichtet, die zu einer malignen Transformation führten. Dies steht im Kontrast zu der praktisch unüberschaubaren Zahl an Tätowierungen weltweit. Die Zusammensetzung der für Tätowierungen verwendeten Farbstoffe variiert stark, und selbst gleiche Farbtöne können unterschiedliche Komponenten enthalten. Das Ziel unserer Studie war es zu untersuchen, auf welche Weise Tätowierungen möglicherweise Hautkrebs auslösen können. PATIENTEN UND METHODEN: Wir berichten über den seltenen Fall einer 24-jährigen Frau, bei der sich sieben Monate nachdem sie eine Tätowierung auf dem Fußrücken erhalten hatte in unmittelbarer Nähe des verwendeten roten Farbstoffs ein Plattenepithelkarzinom entwickelte. Die Komplikationen begannen mit einer unspezifischen Schwellung. Die Läsion wurde histologisch untersucht. Die Zusammensetzung des inkorporierten Farbstoffs wurde mittels Rasterelektronenmikroskopie in Kombination mit energiedispersiver Elementanalyse analysiert. Zur weiteren Charakterisierung wurden Thermogravimetrie und Pulverdiffraktometrie eingesetzt. ERGEBNISSE UND SCHLUSSFOLGERUNGEN: Der Tätowierungsfarbstoff enthielt hauptsächlich Bariumsulfat; Spuren von Al, S, Ti, P, Mg und Cl ließen sich ebenfalls nachweisen. Bei der Analyse zeigten sich Pigmentgranula unterschiedlicher Größe. In seltenen Fällen kann Tätowierungstinte karzinogene Effekte haben, die multifaktoriell zu sein scheinen.

10.
J Dtsch Dermatol Ges ; 14(6): 604-9, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27240068

RESUMEN

BACKGROUND AND OBJECTIVES: Although tattoos have become exceedingly popular in recent years, only few cases of severe reactions leading to malignant transformation have been reported in the literature. This stands in contrast to the virtually innumerable number of tattoos worldwide. The composition of tattoo dyes is highly variable, and even the same colors may contain different compounds. The objective of our study was to investigate in what way tattoo dyes may potentially trigger skin cancer. PATIENT AND METHODS: We report the rare case of a 24-year-old woman who - seven months after getting a tattoo on the back of her foot - developed a squamous cell carcinoma in close proximity to the red dye used. Complications started in the form of nonspecific swelling. The lesion was histologically examined. The composition of the incorporated dye was analyzed using scanning electron microscopy in combination with energy dispersive element analysis. Thermogravimetry and powder diffraction were used for further characterization. RESULTS AND CONCLUSIONS: While the tattoo dye primarily consisted of barium sulfate, traces of Al, S, Ti, P, Mg, and Cl were also detected. The analysis showed pigment granules of varying sizes. In rare cases, tattoo inks may have carcinogenic effects, which appear to be multifactorial.


Asunto(s)
Carcinoma de Células Escamosas/etiología , Neoplasias Cutáneas/etiología , Tatuaje/efectos adversos , Adulto , Color , Colorantes , Femenino , Humanos , Adulto Joven
11.
ACS Appl Mater Interfaces ; 16(14): 17517-17530, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38536956

RESUMEN

We developed a novel method to fabricate copper nanorods in situ in a poly(ether sulfone) (15 wt %) casting solution by a sonochemical reduction of Cu2+ ions with NaBH4. The main twist is the addition of ethanol to remove excess NaBH4 through Cu(0) catalyzed ethanolysis. This enabled the direct use of the resulting copper-containing casting dispersions for membrane preparation by liquid nonsolvent-induced phase separation and led to full utilization of the copper source, generating zero metal waste. We characterized the copper nanorods as presented in the membranes via scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and UV/vis spectroscopy. We could demonstrate that the rapid immobilization from reducing conditions led to the membrane incorporation of copper nanorods in a state of high reactivity, which also promoted the complete oxidation to CuO after fabrication. We further observed a large aspect ratio and crystal straining of the nanorods, likely resulting from growth around the matrix polymer. The entanglement with poly(ether sulfone) further facilitated a selective presentation at the pore surface of the final CuO-decorated membranes. The membranes also exhibit high water permeances of up to 2800 L/m2hbar. Our catalytic membranes achieved exceptionally high activities in the aqueous flow-through reduction of p-nitrophenol (p-NP), with turnover frequencies of up to 115 h-1, even surpassing those of other state-of-the-art catalytic membranes that incorporate Pd or Ag. Additionally, we demonstrated that catalytic hydrolysis of the reducing agent in water can lead to hydrogen gas formation and blocking of active sites during continuous catalytic p-NP hydrogenation. We illustrated that the accompanying conversion loss can be mitigated by facilitated gas transport in the water-filled pores, which is dependent on the orientation of the pore size gradient and the flow direction.

12.
ChemSusChem ; : e202401228, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39092461

RESUMEN

We introduced a new class of gas diffusion electrodes (GDEs) with adjustable pore morphology. We fabricated intrinsically conductive polymer-composite membranes containing carbon filler, enabling a pore structure variation through film casting cum phase separation protocols. We further selectively functionalized specific pore regions of the membranes with Cu by a NaBH4-facilitated coating strategy. The as-obtained GDEs can facilitate the electrochemical CO2 reduction reaction (CO2RR) at Cu active sites that are presented inside a defined and electrically conductive pore system. When employing them as free-standing cathodes in a CO2 flow electrolyzer, we achieved >70% Faradaic efficiencies for CO2RR products at up to 200 mA/cm2. We further demonstrated that deposition of a dense Cu layer on top of the membrane leads to obstruction of the underlying pore openings, inhibiting an excessive wetting of the pore pathways that transport gaseous CO2. However, the presentation of Cu inside the pore system of our novel membrane electrodes increased the C2H4/CO selectivity by a factor of up to 3 compared to Cu presented in the dense layer on top of the membrane. Additionally, we found that gaseous CO2 could still access Cu in macropores after wetting with electrolyte, while CO2RR was completely suppressed in wetted nm-scale pores.

13.
Regen Ther ; 25: 49-60, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38089138

RESUMEN

Introduction: During tissue repair or regeneration, several bioactive molecules are released and interact with each other and act as complex additives or inhibitors for tissue reconstruction. In this study, the bone-healing effects of the combination treatment with tumor necrosis factor-α (TNF-α) inhibition, vascular endothelial growth factor A (VEGF-A) and bone morphogenetic protein-7 (BMP-7) release by gene silencing, and gene transfection with calcium phosphate nanoparticles (CaP) in the rat femoral head was histologically, morphologically, and biochemically evaluated. Methods: A triple-functionalized paste of CaP carrying plasmid DNA encoding for BMP-7 and for VEGF), and siRNA against TNF-α was developed and denoted as CaP3mix. To compare the effects of 3mixCaP, CaP with plasmid DNA encoding BMP-7, VEGF, or siRNA encoding TNF-α was prepared and denoted as CaP/PEI/pBMP-7/SiO2, CaP/PEI/pVEGF/SiO2, or CaP/PEI/siRNA-TNF-α/SiO2, respectively. The bone healing in bone defects in the rat femoral head was investigated after 10 and 21 days of implantation. Results: The levels of bone formation-related markers OCN, Runx2, and SP7 increased at the protein and gene levels in 3mixCaP after 10 days, and 3mixCaP significantly accelerated bone healing compared with the other treatments after 21 days of implantation. Conclusion: The triple-functionalized CaP paste loading plasmid DNA encoding BMP-7 and VEGF and siRNA encoding TNF-α is a promising bioactive material for bone tissue repair.

14.
Nanomaterials (Basel) ; 14(17)2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39269111

RESUMEN

Ultrasmall silver nanoparticles (2 nm) were prepared by reduction with sodium borohydride (NaBH4) and stabilized by the ligand glutathione (a tripeptide: glycine-cysteine-glutamic acid). NMR spectroscopy and optical spectroscopy (UV and fluorescence) revealed that these particles initially consist of silver nanoparticles and fluorescing silver nanoclusters, both stabilized by glutathione. Over time, the silver nanoclusters disappear and only the silver nanoparticles remain. Furthermore, the capping ligand glutathione eliminates hydrogen sulfide (H2S) from the central cysteine and is released from the nanoparticle surface as tripeptide glycine-dehydroalanine-glutamic acid. Hydrogen sulfide reacts with the silver core to form silver sulfide. After four weeks in dispersion at 4 °C, this process is completed. These processes cannot be detected by transmission electron microscopy (TEM), small-angle X-ray scattering (SAXS), or differential centrifugal sedimentation (DCS) as these methods cannot resolve the mixture of nanoparticles and nanoclusters or the nature of the nanoparticle core. X-ray photoelectron spectroscopy showed the mostly oxidized state of the silver nanoparticle core, Ag(+I), both in freshly prepared and in aged silver nanoparticles. These results demonstrate that ultrasmall nanoparticles can undergo unnoticed changes that considerably affect their chemical, physical, and biological properties. In particular, freshly prepared ultrasmall silver nanoparticles are much more toxic against cells and bacteria than aged particles because of the presence of the silver clusters.

15.
J Phys Chem B ; 128(17): 4266-4281, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38640461

RESUMEN

Ultrasmall gold nanoparticles were functionalized with peptides of two to seven amino acids that contained one cysteine molecule as anchor via a thiol-gold bond and a number of alanine residues as nonbinding amino acid. The cysteine was located either in the center of the molecule or at the end (C-terminus). For comparison, gold nanoparticles were also functionalized with cysteine alone. The particles were characterized by UV spectroscopy, differential centrifugal sedimentation (DCS), high-resolution transmission electron microscopy (HRTEM), and small-angle X-ray scattering (SAXS). This confirmed the uniform metal core (2 nm diameter). The hydrodynamic diameter was probed by 1H-DOSY NMR spectroscopy and showed an increase in thickness of the hydrated peptide layer with increasing peptide size (up to 1.4 nm for heptapeptides; 0.20 nm per amino acid in the peptide). 1H NMR spectroscopy of water-dispersed nanoparticles showed the integrity of the peptides and the effect of the metal core on the peptide. Notably, the NMR signals were very broad near the metal surface and became increasingly narrow in a distance. In particular, the methyl groups of alanine can be used as probe for the resolution of the NMR spectra. The number of peptide ligands on each nanoparticle was determined using quantitative 1H NMR spectroscopy. It decreased with increasing peptide length from about 100 for a dipeptide to about 12 for a heptapeptide, resulting in an increase of the molecular footprint from about 0.1 to 1.1 nm2.


Asunto(s)
Oro , Nanopartículas del Metal , Péptidos , Oro/química , Nanopartículas del Metal/química , Péptidos/química , Propiedades de Superficie , Tamaño de la Partícula
16.
ACS Appl Bio Mater ; 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39240877

RESUMEN

Ultrasmall gold nanoparticles (1.5 nm) were covalently conjugated with doxorubicin (AuDox) and AlexaFluor647 (AuAF647) to assess their biodistribution and their efficiency toward brain tumors (glioblastoma). A thorough characterization by transmission electron microscopy, small-angle X-ray scattering, and differential centrifugal sedimentation confirmed their uniform ultrasmall nature which makes them very mobile in the body. Each nanoparticle carried either 13 doxorubicin molecules (AuDox) or 2.7 AlexaFluor-647 molecules (AuAF647). The firm attachment of the ligands to the nanoparticles was demonstrated by their resilience to extensive washing, followed by centrifugation. The particles easily entered mammalian cells (HeLa, T98-G, brain endothelial cells, and human astrocytes) due to their small size. The intravenously delivered fluorescing AuAF647 nanoparticles crossed the blood-brain barrier with ∼23% accumulation in the brain tumor in an orthotopic U87 brain tumor model in nude mice. This was confirmed by elemental analysis (gold; inductively coupled plasma optical emission spectroscopy) in various organs. The doxorubicin-loaded AuDox nanoparticles inhibited brain tumor growth and prolonged animal survival without adverse side effects. Most of the nanoparticles (84%) had been excreted from the animal after 24 h, indicating a high mobility in the body.

17.
Materials (Basel) ; 17(15)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39124365

RESUMEN

Ultrasmall nanoparticles (diameter 2 nm) of silver, platinum, and bimetallic nanoparticles (molar ratio of Ag:Pt 0:100; 20:80; 50:50; 70:30; 100:0), stabilized by the thiolated ligand glutathione, were prepared and characterized by transmission electron microscopy, differential centrifugal sedimentation, X-ray photoelectron spectroscopy, small-angle X-ray scattering, X-ray powder diffraction, and NMR spectroscopy in aqueous dispersion. Gold nanoparticles of the same size were prepared as control. The particles were fluorescently labeled by conjugation of the dye AlexaFluor-647 via copper-catalyzed azide-alkyne cycloaddition after converting amine groups of glutathione into azide groups. All nanoparticles were well taken up by HeLa cells. The cytotoxicity was assessed with an MTT test on HeLa cells and minimal inhibitory concentration (MIC) tests on the bacteria Escherichia coli and Staphylococcus xylosus. Notably, bimetallic AgPt nanoparticles had a higher cytotoxicity against cells and bacteria than monometallic silver nanoparticles or a physical mixture of silver and platinum nanoparticles. However, the measured release of silver ions from monometallic and bimetallic silver nanoparticles in water was very low despite the ultrasmall size and the associated high specific surface area. This is probably due to the surface protection by a dense layer of thiolated ligand glutathione. Thus, the enhanced cytotoxicity of bimetallic AgPt nanoparticles is caused by the biological environment in cell culture media, together with a polarization of silver by platinum.

18.
J Struct Biol ; 184(2): 155-63, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24091039

RESUMEN

Structure and composition of teeth of the saltwater crocodile Crocodylus porosus were characterized by several high-resolution analytical techniques. X-ray diffraction in combination with elemental analysis and infrared spectroscopy showed that the mineral phase of the teeth is a carbonated calcium-deficient nanocrystalline hydroxyapatite in all three tooth-constituting tissues: Dentin, enamel, and cementum. The fluoride content in the three tissues is very low (<0.1 wt.%) and comparable to that in human teeth. The mineral content of dentin, enamel, and cementum as determined by thermogravimetry is 71.3, 80.5, and 66.8 wt.%, respectively. Synchrotron X-ray microtomography showed the internal structure and allowed to visualize the degree of mineralization in dentin, enamel, and cementum. Virtual sections through the tooth and scanning electron micrographs showed that the enamel layer is comparably thin (100-200 µm). The crystallites in the enamel are oriented perpendicularly to the tooth surface. At the dentin-enamel-junction, the packing density of crystallites decreases, and the crystallites do not display an ordered structure as in the enamel. The microhardness was 0.60±0.05 GPa for dentin, 3.15±0.15 GPa for enamel, 0.26±0.08 GPa for cementum close to the crown, and 0.31±0.04 GPa for cementum close to the root margin. This can be explained with the different degree of mineralization of the different tissue types and is comparable with human teeth.


Asunto(s)
Caimanes y Cocodrilos , Diente/química , Animales , Cemento Dental/química , Cemento Dental/diagnóstico por imagen , Cemento Dental/ultraestructura , Esmalte Dental/química , Esmalte Dental/diagnóstico por imagen , Esmalte Dental/ultraestructura , Dentina/química , Dentina/diagnóstico por imagen , Dentina/ultraestructura , Durapatita/química , Dureza , Humanos , Minerales/química , Termogravimetría , Diente/diagnóstico por imagen , Raíz del Diente/química , Raíz del Diente/diagnóstico por imagen , Raíz del Diente/ultraestructura , Difracción de Rayos X , Microtomografía por Rayos X
19.
Inorg Chem ; 52(24): 14326-33, 2013 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-24266590

RESUMEN

GeTe octahedra were prepared by reaction of equimolar amounts of GeCl2·dioxane and Te(SiEt3)2 in oleylamine, whereas a slight excess of the Te precursor yielded GeTe octahedra decorated with elemental Te nanowires, which can be removed by washing with TOP. The mechanism of the GeTe formation is strongly influenced by the solvent. The expected elimination of Et3SiCl (dehalosilylation) only occurred in aprotic solvents, whereas Te(SiEt3)2 was found to react with primary and secondary amines with formation of silylamines. Temperature-dependent studies on the reaction in oleylamine showed that crystalline GeTe particles are formed at temperatures higher than 140 °C. XRD, SAED, and HRTEM studies proved the formation of rhombohedral GeTe nanoparticles. These findings were confirmed by a single-crystal and powder X-ray analysis. The rhombohedral structure modification was found, and the structure was solved in the acentric space group R3m.

20.
Nanomaterials (Basel) ; 13(10)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37242038

RESUMEN

Six types of titanium dioxide particles with defined size, shape, and crystal structure (polymorphic form) were prepared: nanorods (70 × 25 nm2), rutile sub-microrods (190 × 40 nm2), rutile microspheres (620 nm), anatase nanospheres (100 nm), anatase microspheres (510 nm), and amorphous titania microspheres (620 nm). All particles were characterized by scanning electron microscopy, X-ray powder diffraction, dynamic light scattering, infrared spectroscopy, and UV spectroscopy. The sub-toxic cell-biological response to these particles by NR8383 macrophages was assessed. All particle types were taken up well by the cells. The cytotoxicity and the induction of reactive oxygen species (ROS) were negligible for all particles up to a dose of 100 µg mL-1, except for rutile microspheres which had a very rough surface in contrast to anatase and amorphous titania microspheres. The particle-induced cell migration assay (PICMA; based on chemotaxis) of all titanium dioxide particles was comparable to the effect of control silica nanoparticles (50 nm, uncoated, agglomerated) but did not show a trend with respect to particle size, shape, or crystal structure. The coating with carboxymethylcellulose (CMC) had no significant biological effect. However, the rough surface of rutile microspheres clearly induced pro-inflammatory cell reactions that were not predictable by the primary particle size alone.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA