Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Semin Immunol ; 26(5): 409-14, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24768088

RESUMEN

Traumatic spinal cord injury (SCI) activates the hypothalamic-pituitary-adrenal (HPA) axis, a potent neuroendocrine regulator of stress and inflammation. SCI also elicits a profound and sustained intraspinal and systemic inflammatory response. Together, stress hormones and inflammatory mediators will affect the growth and survival of neural and non-neural cells and ultimately neurologic recovery after SCI. Glucocorticoids (GCs) are endogenous anti-inflammatory steroids that are synthesized in response to stress or injury, in part to regulate inflammation. Exogenous synthetic GCs are often used for similar purposes in various diseases; however, their safety and efficacy in pre-clinical and clinical SCI is controversial. The relatively recent discovery that macrophage migration inhibitory factor (MIF) is produced throughout the body and can override the anti-inflammatory effects of GCs may provide unique insight to the importance of endogenous and exogenous GCs after SCI. Here, we review both GCs and MIF and discuss the potential relevance of their interactions after SCI, especially their role in regulating maladaptive mechanisms of plasticity and repair that may contribute to the onset and maintenance of neuropathic pain.


Asunto(s)
Glucocorticoides/metabolismo , Oxidorreductasas Intramoleculares/metabolismo , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Neuralgia/metabolismo , Receptores de Glucocorticoides/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Animales , Regulación de la Expresión Génica , Glucocorticoides/genética , Glucocorticoides/inmunología , Humanos , Sistema Hipotálamo-Hipofisario/inmunología , Sistema Hipotálamo-Hipofisario/metabolismo , Inflamación/genética , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/patología , Oxidorreductasas Intramoleculares/genética , Oxidorreductasas Intramoleculares/inmunología , Factores Inhibidores de la Migración de Macrófagos/genética , Factores Inhibidores de la Migración de Macrófagos/inmunología , Neuralgia/genética , Neuralgia/inmunología , Neuralgia/patología , Sistema Hipófiso-Suprarrenal/inmunología , Sistema Hipófiso-Suprarrenal/metabolismo , Mapeo de Interacción de Proteínas , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/inmunología , Transducción de Señal , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/inmunología , Traumatismos de la Médula Espinal/patología
2.
Brain Behav Immun ; 49: 246-54, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26100488

RESUMEN

All individuals experience stress and hormones (e.g., glucocorticoids/GCs) released during stressful events can affect the structure and function of neurons. These effects of stress are best characterized for brain neurons; however, the mechanisms controlling the expression and binding affinity of glucocorticoid receptors in the spinal cord are different than those in the brain. Accordingly, whether stress exerts unique effects on spinal cord neurons, especially in the context of pathology, is unknown. Using a controlled model of focal excitotoxic lower motor neuron injury in rats, we examined the effects of acute or chronic variable stress on spinal cord motor neuron survival and glial activation. New data indicate that stress exacerbates excitotoxic spinal cord motor neuron loss and associated activation of microglia. In contrast, hypertrophy and hyperplasia of astrocytes and NG2+ glia were unaffected or were modestly suppressed by stress. Although excitotoxic lesions cause significant motor neuron loss and stress exacerbates this pathology, overt functional impairment did not develop in the relevant forelimb up to one week post-lesion. These data indicate that stress is a disease-modifying factor capable of altering neuron and glial responses to pathological challenges in the spinal cord.


Asunto(s)
Microglía/fisiología , Neuronas Motoras/patología , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/fisiopatología , Estrés Psicológico/patología , Estrés Psicológico/fisiopatología , Animales , Proliferación Celular , Modelos Animales de Enfermedad , Agonistas de Aminoácidos Excitadores/farmacología , Femenino , Ácido Glutámico/farmacología , Microglía/efectos de los fármacos , Neuronas Motoras/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Restricción Física , Médula Espinal/efectos de los fármacos , Médula Espinal/patología , Médula Espinal/fisiopatología
3.
Neurobiol Learn Mem ; 89(1): 1-16, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17983769

RESUMEN

Spinal cord neurons can support a simple form of instrumental learning. In this paradigm, rats completely transected at the second thoracic vertebra learn to minimize shock exposure by maintaining a hindlimb in a flexed position. Prior exposure to uncontrollable shock (shock independent of leg position) disrupts this learning. This learning deficit lasts for at least 24h and depends on the NMDA receptor. Intrathecal application of an opioid antagonist blocks the expression, but not the induction, of the learning deficit. A comparison of selective opioid antagonists implicated the kappa-opioid receptor. The present experiments further explore how opioids affect spinal instrumental learning using selective opioid agonists. Male Sprague-Dawley rats were given an intrathecal injection (30 nmol) of a kappa-1 (U69593), a kappa-2 (GR89696), a mu (DAMGO), or a delta opioid receptor agonist (DPDPE) 10 min prior to instrumental testing. Only the kappa-2 opioid receptor agonist GR89696 inhibited acquisition (Experiment 1). GR89696 inhibited learning in a dose-dependent fashion (Experiment 2), but had no effect on instrumental performance in previously trained subjects (Experiment 3). Pretreatment with an opioid antagonist (naltrexone) blocked the GR89696-induced learning deficit (Experiment 4). Administration of GR89696 did not produce a lasting impairment (Experiment 5) and a moderate dose of GR89696 (6 nmol) reduced the adverse consequences of uncontrollable nociceptive stimulation (Experiment 6). The results suggest that a kappa-2 opioid agonist inhibits neural modifications within the spinal cord.


Asunto(s)
Condicionamiento Operante/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Neurotransmisores/farmacología , Piperazinas/farmacología , Pirrolidinas/farmacología , Receptores Opioides kappa/agonistas , Adaptación Fisiológica/efectos de los fármacos , Animales , Aprendizaje por Asociación/efectos de los fármacos , Aprendizaje por Asociación/fisiología , Bencenoacetamidas/farmacología , Condicionamiento Operante/fisiología , Relación Dosis-Respuesta a Droga , Encefalina Ala(2)-MeFe(4)-Gli(5)/farmacología , Encefalina D-Penicilamina (2,5)/farmacología , Masculino , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores Opioides kappa/metabolismo , Médula Espinal/citología , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Vértebras Torácicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA