Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(44): e2304933120, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37847729

RESUMEN

Travel can induce motion sickness (MS) in susceptible individuals. MS is an evolutionary conserved mechanism caused by mismatches between motion-related sensory information and past visual and motion memory, triggering a malaise accompanied by hypolocomotion, hypothermia, hypophagia, and nausea. Vestibular nuclei (VN) are critical for the processing of movement input from the inner ear. Motion-induced activation of VN neurons recapitulates MS-related signs. However, the genetic identity of VN neurons mediating MS-related autonomic and aversive responses remains unknown. Here, we identify a central role of cholecystokinin (CCK)-expressing VN neurons in motion-induced malaise. Moreover, we show that CCK VN inputs onto the parabrachial nucleus activate Calca-expressing neurons and are sufficient to establish avoidance to novel food, which is prevented by CCK-A receptor antagonism. These observations provide greater insight into the neurobiological regulation of MS by identifying the neural substrates of MS and providing potential targets for treatment.


Asunto(s)
Mareo por Movimiento , Vestíbulo del Laberinto , Animales , Ratones , Movimiento , Neuronas/fisiología , Núcleos Vestibulares/fisiología , Vestíbulo del Laberinto/fisiología
2.
Int J Mol Sci ; 24(21)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37958825

RESUMEN

As central nervous system (CNS)-related disorders present an increasing cause of global morbidity, mortality, and high pressure on our healthcare system, there is an urgent need for new insights and treatment options. The endocannabinoid system (ECS) is a critical network of endogenous compounds, receptors, and enzymes that contribute to CNS development and regulation. Given its multifaceted involvement in neurobiology and its significance in various CNS disorders, the ECS as a whole is considered a promising therapeutic target. Despite significant advances in our understanding of the ECS's role in the CNS, its complex architecture and extensive crosstalk with other biological systems present challenges for research and clinical advancements. To bridge these knowledge gaps and unlock the full therapeutic potential of ECS interventions in CNS-related disorders, a plethora of molecular-genetic tools have been developed in recent years. Here, we review some of the most impactful tools for investigating the neurological aspects of the ECS. We first provide a brief introduction to the ECS components, including cannabinoid receptors, endocannabinoids, and metabolic enzymes, emphasizing their complexity. This is followed by an exploration of cutting-edge imaging tools and genetic models aimed at elucidating the roles of these principal ECS components. Special emphasis is placed on their relevance in the context of CNS and its associated disorders.


Asunto(s)
Endocannabinoides , Endocannabinoides/metabolismo , Receptores de Cannabinoides/metabolismo
3.
Addict Biol ; 26(4): e12995, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33368923

RESUMEN

Prescription stimulants, such as d-amphetamine or methylphenidate are used to treat suffering from attention-deficit hyperactivity disorder (ADHD). They potently release dopamine (DA) and norepinephrine (NE) and cause phosphorylation of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit GluA1 in the striatum. Whether other brain regions are also affected remains elusive. Here, we demonstrate that d-amphetamine and methylphenidate increase phosphorylation at Ser845 (pS845-GluA1) in the membrane fraction of mouse cerebellum homogenate. We identify Bergmann glial cells as the source of pS845-GluA1 and demonstrate a requirement for intact NE release. Consequently, d-amphetamine-induced pS845-GluA1 was prevented by ß1-adenoreceptor antagonist, whereas the blockade of DA D1 receptor had no effect. Together, these results indicate that NE regulates GluA1 phosphorylation in Bergmann glial cells in response to prescription stimulants.


Asunto(s)
Estimulantes del Sistema Nervioso Central/farmacología , Cerebelo/metabolismo , Dextroanfetamina/farmacología , Metilfenidato/farmacología , Fosfotransferasas , Animales , Masculino , Ratones , Norepinefrina/metabolismo , Fosforilación , Receptores de Dopamina D1/metabolismo
4.
J Neurosci ; 35(10): 4113-30, 2015 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-25762659

RESUMEN

Ribosomal protein S6 (rpS6), a component of the 40S ribosomal subunit, is phosphorylated on several residues in response to numerous stimuli. Although commonly used as a marker for neuronal activity, its upstream mechanisms of regulation are poorly studied and its role in protein synthesis remains largely debated. Here, we demonstrate that the psychostimulant d-amphetamine (d-amph) markedly increases rpS6 phosphorylation at Ser235/236 sites in both crude and synaptoneurosomal preparations of the mouse striatum. This effect occurs selectively in D1R-expressing medium-sized spiny neurons (MSNs) and requires the cAMP/PKA/DARPP-32/PP-1 cascade, whereas it is independent of mTORC1/p70S6K, PKC, and ERK signaling. By developing a novel assay to label nascent peptidic chains, we show that the rpS6 phosphorylation induced in striatonigral MSNs by d-amph, as well as in striatopallidal MSNs by the antipsychotic haloperidol or in both subtypes by papaverine, is not correlated with the translation of global or 5' terminal oligopyrimidine tract mRNAs. Together, these results provide novel mechanistic insights into the in vivo regulation of the post-translational modification of rpS6 in the striatum and point out the lack of a relationship between PKA-dependent rpS6 phosphorylation and translation efficiency.


Asunto(s)
Cuerpo Estriado/citología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Vías Nerviosas/fisiología , Neuronas/metabolismo , Proteína S6 Ribosómica/metabolismo , Sustancia Negra/citología , Animales , Cuerpo Estriado/efectos de los fármacos , Fosfoproteína 32 Regulada por Dopamina y AMPc/genética , Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Femenino , Subunidades alfa de la Proteína de Unión al GTP/genética , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Harringtoninas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Vías Nerviosas/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/ultraestructura , Fosforilación/efectos de los fármacos , Fosforilación/genética , Inhibidores de la Síntesis de la Proteína/farmacología , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/genética , Puromicina/farmacología , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Sustancia Negra/efectos de los fármacos , Sinaptosomas/efectos de los fármacos , Sinaptosomas/metabolismo
5.
Hippocampus ; 25(7): 858-75, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25545461

RESUMEN

Increasing evidences suggest that dopamine facilitates the encoding of novel memories by the hippocampus. However, the role of dopamine D2 receptors (D2R) in such regulations remains elusive due to the lack of the precise identification of hippocampal D2R-expressing cells. To address this issue, mice expressing the ribosomal protein Rpl22 tagged with the hemagglutinin (HA) epitope were crossed with Drd2-Cre mice allowing the selective expression of HA in D2R-containing cells (Drd2-Cre:RiboTag mice). This new transgenic model revealed a more widespread pattern of D2R-expressing cells identified by HA immunoreactivity than the one initially reported in Drd2-EGFP mice, in which the hilar mossy cells were the main neuronal population detectable. In Drd2-Cre:RiboTag mice, scattered HA/GAD67-positive neurons were detected throughout the CA1/CA3 subfields, being preferentially localized in stratum oriens and stratum lacunosum-moleculare. At the cellular level, HA-labeled cells located in CA1/CA3 subfields co-localized with calcium-binding proteins (parvalbumin, calbindin, and calretinin), neuropeptides (neuropeptide Y, somatostatin), and other markers (neuronal nitric oxide synthase, mGluR1α, reelin, coupTFII, and potassium channel-interacting protein 1). These results suggest that in addition to the glutamatergic hilar mossy cells, D2R-expressing cells constitute a subpopulation of GABAergic hippocampal interneurons.


Asunto(s)
Regulación de la Expresión Génica/genética , Hipocampo/citología , Neuronas/metabolismo , Receptores de Dopamina D2/metabolismo , Animales , Calbindina 2/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Channelrhodopsins , Glutamato Descarboxilasa/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Confocal , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Receptores de Dopamina D2/genética , Proteína Reelina , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo
6.
Artículo en Inglés | MEDLINE | ID: mdl-37858736

RESUMEN

The selection and optimization of appropriate adaptive responses depends on interoceptive and exteroceptive stimuli as well as on the animal's ability to switch from one behavioral strategy to another. Although growing evidence indicate that dopamine D2R-mediated signaling events ensure the selection of the appropriate strategy for each specific situation, the underlying neural circuits through which they mediate these effects are poorly characterized. Here, we investigated the role of D2R signaling in a mesolimbic neuronal subpopulation expressing the Wolfram syndrome 1 (Wfs1) gene. This subpopulation is located within the nucleus accumbens, the central amygdala, the bed nucleus of the stria terminalis, and the tail of the striatum, all brain regions critical for the regulation of emotions and motivated behaviors. Using a mouse model carrying a temporally controlled deletion of D2R in WFS1-neurons, we demonstrate that intact D2R signaling in this neuronal population is necessary to regulate homeostasis-dependent food-seeking behaviors in both male and female mice. In addition, we found that reduced D2R signaling in WFS1-neurons impaired active avoidance learning and innate escape responses. Collectively, these findings identify a yet undocumented role for D2R signaling in WFS1-neurons as a novel effector through which dopamine optimizes appetitive behaviors and regulates defensive behaviors.


Asunto(s)
Dopamina , Síndrome de Wolfram , Animales , Femenino , Masculino , Reacción de Prevención , Neuronas/fisiología , Receptores de Dopamina D1 , Receptores de Dopamina D2/genética
7.
Nat Commun ; 15(1): 7730, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39231983

RESUMEN

Mutations in mitochondrial energy-producing genes lead to a heterogeneous group of untreatable disorders known as primary mitochondrial diseases (MD). Leigh syndrome (LS) is the most common pediatric MD and is characterized by progressive neuromuscular affectation and premature death. Here, we show that daily cannabidiol (CBD) administration significantly extends lifespan and ameliorates pathology in two LS mouse models, and improves cellular function in fibroblasts from LS patients. CBD delays motor decline and neurodegenerative signs, improves social deficits and breathing abnormalities, decreases thermally induced seizures, and improves neuropathology in affected brain regions. Mechanistically, we identify peroxisome proliferator-activated receptor gamma (PPARγ) as a key nuclear receptor mediating CBD's beneficial effects, while also providing proof of dysregulated PPARγ expression and activity as a common feature in both mouse neurons and fibroblasts from LS patients. Taken together, our results provide the first evidence for CBD as a potential treatment for LS.


Asunto(s)
Cannabidiol , Enfermedades Mitocondriales , PPAR gamma , Animales , Femenino , Humanos , Masculino , Ratones , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/patología , Cannabidiol/farmacología , Cannabidiol/uso terapéutico , Modelos Animales de Enfermedad , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Enfermedad de Leigh/tratamiento farmacológico , Enfermedad de Leigh/metabolismo , Enfermedad de Leigh/genética , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Enfermedades Mitocondriales/tratamiento farmacológico , Enfermedades Mitocondriales/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , PPAR gamma/metabolismo , PPAR gamma/genética
8.
Nat Neurosci ; 25(7): 900-911, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35710984

RESUMEN

The cerebellum, a primary brain structure involved in the control of sensorimotor tasks, also contributes to higher cognitive functions including reward, emotion and social interaction. Although the regulation of these behaviors has been largely ascribed to the monoaminergic system in limbic regions, the contribution of cerebellar dopamine signaling in the modulation of these functions remains largely unknown. By combining cell-type-specific transcriptomics, histological analyses, three-dimensional imaging and patch-clamp recordings, we demonstrate that cerebellar dopamine D2 receptors (D2Rs) in mice are preferentially expressed in Purkinje cells (PCs) and regulate synaptic efficacy onto PCs. Moreover, we found that changes in D2R levels in PCs of male mice during adulthood alter sociability and preference for social novelty without affecting motor functions. Altogether, these findings demonstrate novel roles for D2R in PC function and causally link cerebellar D2R levels of expression to social behaviors.


Asunto(s)
Células de Purkinje , Receptores de Dopamina D2 , Animales , Cerebelo , Masculino , Ratones , Ratones Endogámicos C57BL , Células de Purkinje/fisiología , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Conducta Social
9.
Biol Psychiatry ; 88(12): 945-954, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-32711953

RESUMEN

BACKGROUND: As an integrator of molecular pathways, mTOR (mammalian target of rapamycin) has been associated with diseases including neurodevelopmental, psychiatric, and neurodegenerative disorders such as autism spectrum disorder, schizophrenia, and Huntington's disease. An important brain area involved in all these diseases is the striatum. However, the mechanisms behind how mTOR is involved in striatal physiology and its relative role in distinct neuronal populations in these striatal-related diseases still remain to be clarified. METHODS: Using Drd1-Cre mTOR-conditional knockout male mice, we combined behavioral, biochemical, electrophysiological, and morphological analysis aiming to untangle the role of mTOR in direct pathway striatal projection neurons and how this would impact on striatal physiology. RESULTS: Our results indicate deep behavioral changes in absence of mTOR in Drd1-expressing neurons such as decreased spontaneous locomotion, impaired social interaction, and decreased marble-burying behavior. These alterations were accompanied by a Kv1.1-induced increase in the fast phase of afterhyperpolarization and coincident decreased distal spine density in striatal direct pathway striatal projection neurons. The physiological changes were mechanistically independent of protein synthesis but sensitive to pharmacological blockade of transforming protein RhoA activity. CONCLUSIONS: These results identify mTOR signaling as an important regulator of striatal functions through an intricate mechanism involving RhoA and culminating in Kv1.1 overfunction, which could be targeted to treat striatal-related monogenic disorders associated with the mTOR signaling pathway.


Asunto(s)
Trastorno del Espectro Autista , Sirolimus , Animales , Cuerpo Estriado/metabolismo , Masculino , Ratones , Neuronas/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
10.
Nat Commun ; 11(1): 1957, 2020 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-32327644

RESUMEN

Action control is a key brain function determining the survival of animals in their environment. In mammals, neurons expressing dopamine D2 receptors (D2R) in the dorsal striatum (DS) and the nucleus accumbens (Acb) jointly but differentially contribute to the fine regulation of movement. However, their region-specific molecular features are presently unknown. By combining RNAseq of striatal D2R neurons and histological analyses, we identified hundreds of novel region-specific molecular markers, which may serve as tools to target selective subpopulations. As a proof of concept, we characterized the molecular identity of a subcircuit defined by WFS1 neurons and evaluated multiple behavioral tasks after its temporally-controlled deletion of D2R. Consequently, conditional D2R knockout mice displayed a significant reduction in digging behavior and an exacerbated hyperlocomotor response to amphetamine. Thus, targeted molecular analyses reveal an unforeseen heterogeneity in D2R-expressing striatal neuronal populations, underlying specific D2R's functional features in the control of specific motor behaviors.


Asunto(s)
Neostriado/citología , Neuronas/fisiología , Núcleo Accumbens/citología , Receptores de Dopamina D2/metabolismo , Anfetamina/farmacología , Animales , Biomarcadores/metabolismo , Cuerpo Estriado/citología , Cuerpo Estriado/metabolismo , Cuerpo Estriado/fisiología , Dopaminérgicos/farmacología , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos , Actividad Motora/efectos de los fármacos , Actividad Motora/genética , Neostriado/metabolismo , Neostriado/fisiología , Vías Nerviosas , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Núcleo Accumbens/metabolismo , Núcleo Accumbens/fisiología , Receptores de Dopamina D2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA