Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
NPJ Breast Cancer ; 8(1): 126, 2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36446794

RESUMEN

Despite the biological and therapeutic relevance of CDK4/6 for the treatment of HR+, HER2- advanced breast cancer, the detailed mode of action of CDK4/6 inhibitors is not completely understood. Of particular interest, phosphorylation of CDK4 at T172 (pT172) is critical for generating the active conformation, yet no such crystal structure has been reported to date. We describe here the x-ray structure of active CDK4-cyclin D3 bound to the CDK4/6 inhibitor abemaciclib and discuss the key aspects of the catalytically-competent complex. Furthermore, the effect of CDK4/6 inhibitors on CDK4 T172 phosphorylation has not been explored, despite its role as a potential biomarker of CDK4/6 inhibitor response. We show mechanistically that CDK4/6i stabilize primed (pT172) CDK4-cyclin D complex and selectively displace p21 in responsive tumor cells. Stabilization of active CDK4-cyclin D1 complex can lead to pathway reactivation following alternate dosing regimen. Consequently, sustained binding of abemaciclib to CDK4 leads to potent cell cycle inhibition in breast cancer cell lines and prevents rebound activation of downstream signaling. Overall, our study provides key insights demonstrating that prolonged treatment with CDK4/6 inhibitors and composition of the CDK4/6-cyclin D complex are both critical determinants of abemaciclib efficacy, with implications for this class of anticancer therapy.

2.
Cancers (Basel) ; 11(1)2019 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-30621214

RESUMEN

Therapeutic targeting of estrogen receptor-α (ERα) by the anti-estrogen tamoxifen is standard of care for premenopausal breast cancer patients and remains a key component of treatment strategies for postmenopausal patients. While tamoxifen significantly increases overall survival, tamoxifen resistance remains a major limitation despite continued expression of ERα in resistant tumors. Previous reports have described increased oxidative stress in tamoxifen resistant versus sensitive breast cancer and a role for PARP1 in mediating oxidative damage repair. We hypothesized that PARP1 activity mediated tamoxifen resistance in ERα-positive breast cancer and that combining the antiestrogen tamoxifen with a PARP1 inhibitor (PARPi) would sensitize tamoxifen resistant cells to tamoxifen therapy. In tamoxifen-resistant vs. -sensitive breast cancer cells, oxidative stress and PARP1 overexpression were increased. Furthermore, differential PARylation of ERα was observed in tamoxifen-resistant versus -sensitive cells, and ERα PARylation was increased by tamoxifen treatment. Loss of ERα PARylation following treatment with a PARP inhibitor (talazoparib) augmented tamoxifen sensitivity and decreased localization of both ERα and PARP1 to ERα-target genes. Co-administration of talazoparib plus tamoxifen increased DNA damage accumulation and decreased cell survival in a dose-dependent manner. The ability of PARPi to overcome tamoxifen resistance was dependent on ERα, as lack of ERα-mediated estrogen signaling expression and showed no response to tamoxifen-PARPi treatment. These results correlate ERα PARylation with tamoxifen resistance and indicate a novel mechanism-based approach to overcome tamoxifen resistance in ER+ breast cancer.

3.
Mol Cancer Res ; 16(8): 1226-1240, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29759990

RESUMEN

Ovarian cancer (OC) cells frequently metastasize to the omentum, and adipocytes play a significant role in ovarian tumor progression. Therapeutic interventions targeting aberrant DNA methylation in ovarian tumors have shown promise in the clinic, but the effects of epigenetic therapy on the tumor microenvironment are understudied. Here, we examined the effect of adipocytes on OC cell behavior in culture and impact of targeting DNA methylation in adipocytes on OC metastasis. The presence of adipocytes increased OC cell migration and invasion, and proximal and direct coculture of adipocytes increased OC proliferation alone or after treatment with carboplatin. Treatment of adipocytes with hypomethylating agent guadecitabine decreased migration and invasion of OC cells toward adipocytes. Subcellular protein fractionation of adipocytes treated with guadecitabine revealed decreased DNA methyltransferase 1 (DNMT1) levels even in the presence of DNA synthesis inhibitor, aphidicolin. Methyl-Capture- and RNA-sequencing analysis of guadecitabine-treated adipocytes revealed derepression of tumor-suppressor genes and epithelial-mesenchymal transition inhibitors. SUSD2, a secreted tumor suppressor downregulated by promoter CpG island methylation in adipocytes, was upregulated after guadecitabine treatment, and recombinant SUSD2 decreased OC cell migration and invasion. Integrated analysis of the methylomic and transcriptomic data identified pathways associated with inhibition of matrix metalloproteases and fatty acid α-oxidation, suggesting a possible mechanism of how epigenetic therapy of adipocytes decreases metastasis. In conclusion, the effect of DNMT inhibitor on fully differentiated adipocytes suggests that hypomethylating agents may affect the tumor microenvironment to decrease cancer cell metastasis.Implications: Epigenetic targeting of tumor microenvironment can affect metastatic behavior of ovarian cancer cells. Mol Cancer Res; 16(8); 1226-40. ©2018 AACR.


Asunto(s)
Adipocitos/metabolismo , Cistadenocarcinoma Seroso/genética , Epigenómica/métodos , Neoplasias Ováricas/genética , Movimiento Celular , Cistadenocarcinoma Seroso/patología , Femenino , Humanos , Clasificación del Tumor , Invasividad Neoplásica , Neoplasias Ováricas/patología
4.
Clin Cancer Res ; 24(13): 3163-3175, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29615458

RESUMEN

Purpose: PARP inhibitors (PARPi) are primarily effective against BRCA1/2-mutated breast and ovarian cancers, but resistance due to reversion of mutated BRCA1/2 and other mechanisms is common. Based on previous reports demonstrating a functional role for DNMT1 in DNA repair and our previous studies demonstrating an ability of DNA methyltransferase inhibitor (DNMTi) to resensitize tumors to primary therapies, we hypothesized that combining a DNMTi with PARPi would sensitize PARPi-resistant breast and ovarian cancers to PARPi therapy, independent of BRCA status.Experimental Design: Breast and ovarian cancer cell lines (BRCA-wild-type/mutant) were treated with PARPi talazoparib and DNMTi guadecitabine. Effects on cell survival, ROS accumulation, and cAMP levels were examined. In vivo, mice bearing either BRCA-proficient breast or ovarian cancer cells were treated with talazoparib and guadecitabine, alone or in combination. Tumor progression, gene expression, and overall survival were analyzed.Results: Combination of guadecitabine and talazoparib synergized to enhance PARPi efficacy, irrespective of BRCA mutation status. Coadministration of guadecitabine with talazoparib increased accumulation of ROS, promoted PARP activation, and further sensitized, in a cAMP/PKA-dependent manner, breast and ovarian cancer cells to PARPi. In addition, DNMTi enhanced PARP "trapping" by talazoparib. Guadecitabine plus talazoparib decreased xenograft tumor growth and increased overall survival in BRCA-proficient high-grade serous ovarian and triple-negative breast cancer models.Conclusions: The novel combination of the next-generation DNMTi guadecitabine and the first-in-class PARPi talazoparib inhibited breast and ovarian cancers harboring either wild-type- or mutant-BRCA, supporting further clinical exploration of this drug combination in PARPi-resistant cancers. Clin Cancer Res; 24(13); 3163-75. ©2018 AACR.


Asunto(s)
Proteína BRCA1/genética , Proteína BRCA2/genética , Epigénesis Genética/efectos de los fármacos , Mutación , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Biomarcadores , Línea Celular Tumoral , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Neoplasias Ováricas/tratamiento farmacológico , Ftalazinas/administración & dosificación , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Oncotarget ; 7(22): 32810-20, 2016 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-27147568

RESUMEN

Genomic analysis of ovarian cancer cell lines has revealed a panel that best represents the most common ovarian cancer subtype, high-grade serous ovarian cancer (HGSOC). However, these HGSOC-like cell lines have not been extensively applied by ovarian cancer researchers to date, and the most commonly used cell lines in the ovarian cancer field do not genetically resemble the major clinical type of the disease. For the HGSOC-like lines to serve as suitable models, they need to be characterized for common functional assays. To achieve that objective, we systematically studied a panel of HGSOC cells CAOV3, COV362, Kuramochi, OVCAR4, OVCAR5, OVCAR8, OVSAHO and SNU119 for migration, invasion, proliferation, clonogenicity, EMT phenotype and cisplatin resistance. They exhibited a range of efficacies and OVCAR5, OVCAR8 and Kuramochi were the most aggressive. SNU119 and OVSAHO cells demonstrated the lowest functional activities. Wide differences in expression of EMT markers were observed between cell lines. SNU119 were the most epithelial and OVCAR8 had the most mesenchymal phenotype. COV362 was the most resistant to cisplatin while CAOV3 was the most sensitive. Taken together, our systematic characterization represents a valuable resource to help guide the application of HGSOC cells by the cancer research community.


Asunto(s)
Neoplasias Quísticas, Mucinosas y Serosas/patología , Neoplasias Ováricas/patología , Antineoplásicos/farmacología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Cisplatino/farmacología , Relación Dosis-Respuesta a Droga , Resistencia a Antineoplásicos , Transición Epitelial-Mesenquimal , Femenino , Humanos , Concentración 50 Inhibidora , Clasificación del Tumor , Invasividad Neoplásica , Neoplasias Quísticas, Mucinosas y Serosas/tratamiento farmacológico , Neoplasias Ováricas/tratamiento farmacológico , Fenotipo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA