Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Epidemiol Infect ; 152: e11, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38185822

RESUMEN

In addition to the well-known differences among the four dengue serotypes, intra-serotypic antigenic diversity has been proposed to play a role in viral evolution and epidemic fluctuation. A replacement of genotype II by genotype III of dengue virus serotype 3 (DENV3) occurred in Thailand during 2007-2014, raising questions about the role of intra-serotypic antigenic differences in this genotype shift. We characterized the antigenic difference of DENV3 of genotypes II and III in Thailand, utilizing a neutralizing antibody assay with DENV3 vaccine sera and monotypic DENV3 sera. Although there was significant antigenic diversity among the DENV3, it did not clearly associate with the genotype. Our data therefore do not support the role of intra-serotypic antigenic difference in the genotype replacement. Amino acid alignment showed that eight positions are potentially associated with diversity between distinct antigenic subgroups. Most of these amino acids were found in envelope domain II. Some positions (aa81, aa124, and aa172) were located on the surface of virus particles, probably involving the neutralization sensitivity. Notably, the strains of both genotypes II and III showed clear antigenic differences from the vaccine genotype I strain. Whether this differencewill affect vaccine efficacy requires further studies.


Asunto(s)
Virus del Dengue , Dengue , Vacunas , Humanos , Virus del Dengue/genética , Serogrupo , Dengue/epidemiología , Tailandia/epidemiología , Variación Antigénica
2.
J Nat Prod ; 85(12): 2779-2788, 2022 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-36399766

RESUMEN

Coronavirus disease-2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection, has become a pandemic and public health crisis. SARS-CoV-2 and the seasonal common cold coronavirus (HCoV-OC43) belong to the beta genus of human coronaviruses (HCoVs). In-cell ELISA assays were performed using HCoV-OC43 and SARS-CoV-2 and evaluated the antiviral activity of herbal plants. Eurycoma longifolia (EL) and Eurycoma harmandiana (EH) roots (antipyretic properties) and their constituent quassinoids, especially chaparrinone and eurycomalactone, showed potent anti-HCoV-OC43 and SARS-CoV-2 activities, and the low IC50 values of the mentioned constituents were observed in the range of 0.32-0.51 µM. Eurycomanone and 13ß,21-dihydroeurycomanone may contribute to the antiviral activity of EL, whereas chaparrinone is the major and active antiviral constituent of EH root. The content of quassinoids, ß-carboline, and canthin-6-one alkaloids and the cytotoxicity profile of EL and EH extracts were varied regarding extraction solvents. The boiled water and 50% EtOH extractions of both plants were less toxic than those with 95% EtOH as the extraction solvent. Our research suggests that quassinoids, which come from EL and EH roots and are anti-coronavirus compounds, are potential treatment candidates for COVID-19 and merit further in vivo investigations.


Asunto(s)
COVID-19 , Resfriado Común , Coronavirus Humano OC43 , Eurycoma , Cuassinas , Humanos , SARS-CoV-2 , Plantas , Antivirales/farmacología
3.
Phytomedicine ; 112: 154708, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36805485

RESUMEN

BACKGROUND: Andrographis paniculata (Burm. f.) Nees has demonstrated potential for treating infections caused by coronaviruses. However, no antiviral activity of andrographolide or A. paniculata extracts against human coronavirus organ culture 43 (HCoV-OC43) has been reported. PURPOSE: This study aimed to evaluate the anti-HCoV-OC43 effect of andrographolide and A. paniculata as well as the correlation between andrographolide concentration and the anti-HCoV-OC43 activity of A. paniculata extracts. METHODS: This study evaluated and compared the in vitro anti-HCoV-OC43 activities of various A. paniculata extracts and andrographolide. To obtain A. paniculata extracts with different concentrations of andrographolide and its components, methanol and deep eutectic solvents (DES) were used to extract the aerial parts of A. paniculata. Andrographolide content was determined using UV-HPLC, and antiviral activity was assessed in HCT-8 colon cells. RESULTS: The methanol and five acidic DES (containing malic acid or citric acid) extracts of A. paniculata exerted anti-HCoV-OC43 activity. Antiviral activity had a moderately strong positive linear relationship (r = 0.7938) with andrographolide content. Although the methanol extract contained the highest andrographolide content (2.34 mg/ml), its anti-HCoV-OC43 activity was lower than that of the DES extracts containing lower andrographolide concentrations (0.92-1.46 mg/ml). CONCLUSION: Methanol and the five acidic DES extracts of A. paniculata exhibited anti-HCoV-OC43 activity. However, the in vitro antiviral activity of A. paniculata extracts did not have a very strong positive linear relationship (r < 0.8) with andrographolide concentration in the extract. As a result, when comparing A. paniculata extracts, the anti-HCoV-OC43 test could provide a different result from the andrographolide concentration determination.


Asunto(s)
Andrographis , Coronavirus , Diterpenos , Humanos , Extractos Vegetales/farmacología , Solventes , Andrographis paniculata , Disolventes Eutécticos Profundos , Metanol , Técnicas de Cultivo de Órganos , Diterpenos/farmacología
4.
Vaccine ; 31(44): 5134-40, 2013 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-23973247

RESUMEN

In the absence of a vaccine or sustainable vector control measures, illnesses caused by dengue virus infection remain an important public health problem in many tropical countries. During the export of dengue virus particles, furin-mediated cleavage of the prM envelope protein is usually incomplete, thus generating a mixture of immature, partially mature and mature extracellular particles. Variations in the arrangement and conformation of the envelope proteins among these particles may be associated with their different roles in shaping the antibody response. In an attempt to improve upon live, attenuated dengue vaccine approaches, a mutant chimeric virus, with enhanced prM cleavage, was generated by introducing a cleavage-enhancing substitution into a chimeric DENV-1/2 virus genome, encoding the prM+E sequence of a recent DENV-1 isolate under an attenuated DENV-2 genetic background. A modest increase in virus specific infectivity observed in the mutant chimeric virus affected neither the attenuation phenotype, when assessed in the suckling mouse neurovirulence model, nor multiplication in mosquitoes. The two chimeric viruses induced similar levels of anti-DENV-1 neutralizing antibody response in mice and rhesus macaques, but more efficient control of viremia during viral challenge was observed in macaques immunized with the mutant chimeric virus. These results indicate that the DENV-1/2 chimeric virus, with enhanced prM cleavage, could be useful as an alternative live, attenuated vaccine candidate for further tests in humans.


Asunto(s)
Vacunas contra el Dengue/inmunología , Virus del Dengue/genética , Dengue/prevención & control , Proteínas del Envoltorio Viral/inmunología , Aedes , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Formación de Anticuerpos , Virus del Dengue/inmunología , Evaluación Preclínica de Medicamentos , Macaca mulatta , Ratones , Ratones Endogámicos BALB C , Virus Reordenados/genética , Virus Reordenados/inmunología , Vacunas Atenuadas/inmunología , Viremia/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA