Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(12)2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37420568

RESUMEN

In recent years, there has been an expansion in the development of simulators that use virtual reality (VR) as a learning tool. In surgery where robots are used, VR serves as a revolutionary technology to help medical doctors train in using these robotic systems and accumulate knowledge without risk. This article presents a study in which VR is used to create a simulator designed for robotically assisted single-uniport surgery. The control of the surgical robotic system is achieved using voice commands for laparoscopic camera positioning and via a user interface developed using the Visual Studio program that connects a wristband equipped with sensors attached to the user's hand for the manipulation of the active instruments. The software consists of the user interface and the VR application via the TCP/IP communication protocol. To study the evolution of the performance of this virtual system, 15 people were involved in the experimental evaluation of the VR simulator built for the robotic surgical system, having to complete a medically relevant task. The experimental data validated the initial solution, which will be further developed.


Asunto(s)
Laparoscopía , Robótica , Realidad Virtual , Humanos , Simulación por Computador , Competencia Clínica , Interfaz Usuario-Computador
2.
J Clin Med ; 12(14)2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37510731

RESUMEN

Robotic-assisted single-incision laparoscopic surgery (SILS) is becoming an increasingly widespread field worldwide due to the benefits it brings to both the patient and the surgeon. The goal of this study is to develop a secure robotic solution for SILS, focusing specifically on urology, by identifying and addressing various safety concerns from an early design stage. Starting with the medical tasks and protocols, the technical specifications of the robotic system as well as potential; hazards have been identified. By employing competitive engineering design methods such as Analytic Hierarchy Process (AHP), Risk assessment, and Failure Mode and Effects Analysis (FMEA), a safe design solution is proposed. A set of experiments is conducted to validate the proposed concept, and the results strongly support the development of the experimental model. The Finite Element Analysis (FEA) method is applied to validate the mechanical architecture within a set of simulations, demonstrating the compliance of the robotic system with the proposed technical specifications and its capability to safely perform SILS procedures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA