Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Phys Chem Chem Phys ; 24(16): 9118-9122, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35383807

RESUMEN

We report on the formation of a high-order commensurate (HOC) structure of 5,14-dihydro-5,7,12,14-tetraazapentacene (DHTAP) molecules on the highly corrugated Cu(110)-(2 × 1)O surface. Scanning tunnelling microscopy shows that the DHTAP molecules form a periodic uniaxial arrangement in which groups of seven molecules are distributed over exactly nine substrate lattice spacings along the [1̄10] direction. DFT-calculations reveal that this peculiar arrangement is associated with different tilting of the seven DHTAP molecules within the quasi one-dimensional HOC unit cell. The orientational degree of freedom thus adds a new parameter, which can efficiently stabilize complex molecular structures on corrugated surfaces.

2.
Phys Chem Chem Phys ; 24(46): 28540-28547, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36411984

RESUMEN

We have experimentally determined the adsorption structure, charge state, and metalation state of porphin, the fundamental building block of porphyrins, on ultrathin Ag(001)-supported MgO(001) films by scanning tunneling microscopy and photoemission spectroscopy, supported by calculations based on density functional theory. By tuning the substrate work function to values below and above the critical work function for charging, we succeeded in the preparation of 2H-P monolayers which contain negatively charged and uncharged molecules. It is shown that the porphin molecules self-metalate at room temperature, forming the corresponding Mg-porphin, irrespective of their charge state. This is in contrast to self-metalation of tetraphenyl porphyrin (TPP), which occurs on planar MgO(001) only if the molecules are negatively charged. The different reactivity is explained by the reduced molecule-substrate distance of the planar porphin molecule compared to the bulkier TPP. The results of this study shed light on the mechanism of porphyrin self-metalation on oxides and highlight the role of the adsorption geometry on the chemical reactivity.

3.
Angew Chem Int Ed Engl ; 61(20): e202201916, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35267236

RESUMEN

Uncommon metal oxidation states in porphyrinoid cofactors are responsible for the activity of many enzymes. The F430 and P450nor co-factors, with their reduced NiI - and FeIII -containing tetrapyrrolic cores, are prototypical examples of biological systems involved in methane formation and in the reduction of nitric oxide, respectively. Herein, using a comprehensive range of experimental and theoretical methods, we raise evidence that nickel tetraphenyl porphyrins deposited in vacuo on a copper surface are reactive towards nitric oxide disproportionation at room temperature. The interpretation of the measurements is far from being straightforward due to the high reactivity of the different nitrogen oxides species (eventually present in the residual gas background) and of the possible reaction intermediates. The picture is detailed in order to disentangle the challenging complexity of the system, where even a small fraction of contamination can change the scenario.


Asunto(s)
Níquel , Óxido Nítrico , Cobre , Compuestos Férricos , Metales , Oxidación-Reducción
4.
Small ; 17(50): e2104779, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34643036

RESUMEN

Molecular interfaces formed between metals and molecular compounds offer a great potential as building blocks for future opto-electronics and spintronics devices. Here, a combined theoretical and experimental spectro-microscopy approach is used to show that the charge transfer occurring at the interface between nickel tetraphenyl porphyrins and copper changes both spin and oxidation states of the Ni ion from [Ni(II), S = 0] to [Ni(I), S = 1/2]. The chemically active Ni(I), even in a buried multilayer system, can be functionalized with nitrogen dioxide, allowing a selective tuning of the electronic properties of the Ni center that is switched to a [Ni(II), S = 1] state. While Ni acts as a reversible spin switch, it is found that the electronic structure of the macrocycle backbone, where the frontier orbitals are mainly localized, remains unaffected. These findings pave the way for using the present porphyrin-based system as a platform for the realization of multifunctional devices where the magnetism and the optical/transport properties can be controlled simultaneously by independent stimuli.


Asunto(s)
Porfirinas , Cobre , Metales , Níquel , Temperatura
5.
Chemistry ; 27(10): 3526-3535, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33264485

RESUMEN

Due to its unique magnetic properties offered by the open-shell electronic structure of the central metal ion, and for being an effective catalyst in a wide variety of reactions, iron phthalocyanine has drawn significant interest from the scientific community. Nevertheless, upon surface deposition, the magnetic properties of the molecular layer can be significantly affected by the coupling occurring at the interface, and the more reactive the surface, the stronger is the impact on the spin state. Here, we show that on Cu(100), indeed, the strong hybridization between the Fe d-states of FePc and the sp-band of the copper substrate modifies the charge distribution in the molecule, significantly influencing the magnetic properties of the iron ion. The FeII ion is stabilized in the low singlet spin state (S=0), leading to the complete quenching of the molecule magnetic moment. By exploiting the FePc/Cu(100) interface, we demonstrate that NO2 dissociation can be used to gradually change the magnetic properties of the iron ion, by trimming the gas dosage. For lower doses, the FePc film is decoupled from the copper substrate, restoring the gas phase triplet spin state (S=1). A higher dose induces the transition from ferrous to ferric phthalocyanine, in its intermediate spin state, with enhanced magnetic moment due to the interaction with the atomic ligands. Remarkably, in this way, three different spin configurations have been observed within the same metalorganic/metal interface by exposing it to different doses of NO2 at room temperature.

6.
Angew Chem Int Ed Engl ; 60(10): 5078-5082, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33245197

RESUMEN

Metalation and self-metalation reactions of porphyrins on oxide surfaces have recently gained interest. The mechanism of porphyrin self-metalation on oxides is, however, far from being understood. Herein, we show by a combination of results obtained with scanning tunneling microscopy, photoemission spectroscopy, and DFT computations, that the self-metalation of 2H-tetraphenylporphyrin on the surface of ultrathin MgO(001) films is promoted by charge transfer. By tuning the work function of the MgO(001)/Ag(001) substrate, we are able to control the charge and the metalation state of the porphyrin molecules on the surface.

7.
Proc Natl Acad Sci U S A ; 111(2): 605-10, 2014 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-24344291

RESUMEN

The basis for a quantum-mechanical description of matter is electron wave functions. For atoms and molecules, their spatial distributions and phases are known as orbitals. Although orbitals are very powerful concepts, experimentally only the electron densities and -energy levels are directly observable. Regardless whether orbitals are observed in real space with scanning probe experiments, or in reciprocal space by photoemission, the phase information of the orbital is lost. Here, we show that the experimental momentum maps of angle-resolved photoemission from molecular orbitals can be transformed to real-space orbitals via an iterative procedure which also retrieves the lost phase information. This is demonstrated with images obtained of a number of orbitals of the molecules pentacene (C22H14) and perylene-3,4,9,10-tetracarboxylic dianhydride (C24H8O6), adsorbed on silver, which are in excellent agreement with ab initio calculations. The procedure requires no a priori knowledge of the orbitals and is shown to be simple and robust.


Asunto(s)
Electrones , Modelos Teóricos , Teoría Cuántica , Naftacenos/química , Perileno/química , Espectroscopía de Fotoelectrones , Plata/química , Propiedades de Superficie
8.
J Electron Spectros Relat Phenomena ; 204(Pt A): 92-101, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26752804

RESUMEN

The frontier orbitals of molecules are the prime determinants of their chemical, optical and electronic properties. Arguably, the most direct method of addressing the (filled) frontier orbitals is ultra-violet photoemission spectroscopy (UPS). Although UPS is a mature technique from the early 1970s on, the angular distribution of the photoemitted electrons was thought to be too complex to be analysed quantitatively. Recently angle resolved UPS (ARUPS) work on conjugated molecules both, in ordered thick films and chemisorbed monolayers, has shown that the angular (momentum) distribution of the photocurrent from orbital emissions can be simply understood. The approach, based on the assumption of a plane wave final state is becoming known as orbital tomography. Here we will demonstrate, with selected examples of pentacene (5A) and sexiphenyl (6P), the potential of orbital tomography. First it will be shown how the full angular distribution of the photocurrent (momentum map) from a specific orbital is related to the real space orbital by a Fourier transform. Examples of the reconstruction of 5A orbitals will be given and the procedure for recovering the lost phase information will be outlined. We then move to examples of sexiphenyl where we interrogate the original band maps of thick sexiphenyl in the light of our understanding of orbital tomography that has developed since then. With comparison to theoretical simulations of the molecular band maps, the molecular conformation and orientation will be concluded. New results for the sexiphenyl monolayer on Al(1 1 0) will then be presented. From the band maps it will be concluded that the molecule is planarised and adopts a tilted geometry. Finally the momentum maps down to HOMO-11 will be analysed and real space orbitals reconstructed.

9.
J Electron Spectros Relat Phenomena ; 195: 293-300, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25284953

RESUMEN

Here we report on a combined experimental and theoretical study on the structural and electronic properties of a monolayer of Copper-Phthalocyanine (CuPc) on the Au(1 1 0) surface. Low-energy electron diffraction reveals a commensurate overlayer unit cell containing one adsorbate species. The azimuthal alignment of the CuPc molecule is revealed by comparing experimental constant binding energy (kxky )-maps using angle-resolved photoelectron spectroscopy with theoretical momentum maps of the free molecule's highest occupied molecular orbital (HOMO). This structural information is confirmed by total energy calculations within the framework of van-der-Waals corrected density functional theory. The electronic structure is further analyzed by computing the molecule-projected density of states, using both a semi-local and a hybrid exchange-correlation functional. In agreement with experiment, the HOMO is located about 1.2 eV below the Fermi-level, while there is no significant charge transfer into the molecule and the CuPc LUMO remains unoccupied on the Au(1 1 0) surface.

10.
Nat Commun ; 15(1): 1804, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38413573

RESUMEN

Excitons are realizations of a correlated many-particle wave function, specifically consisting of electrons and holes in an entangled state. Excitons occur widely in semiconductors and are dominant excitations in semiconducting organic and low-dimensional quantum materials. To efficiently harness the strong optical response and high tuneability of excitons in optoelectronics and in energy-transformation processes, access to the full wavefunction of the entangled state is critical, but has so far not been feasible. Here, we show how time-resolved photoemission momentum microscopy can be used to gain access to the entangled wavefunction and to unravel the exciton's multiorbital electron and hole contributions. For the prototypical organic semiconductor buckminsterfullerene (C60), we exemplify the capabilities of exciton tomography and achieve unprecedented access to key properties of the entangled exciton state including localization, charge-transfer character, and ultrafast exciton formation and relaxation dynamics.

11.
Phys Chem Chem Phys ; 15(13): 4691-8, 2013 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-23439967

RESUMEN

In this work, the structure of the tetraphenylporphyrin (H2TPP) monolayer grown on the oxygen passivated Cu(110)-(2 × 1)O surface has been investigated with LT-STM and elucidated by DFT-calculations. The monolayer is commensurate with all molecules occupying the same adsorption site, but there are two molecules per unit cell. The STM images suggest alternating chirality for the molecules within one unit cell which is supported by DFT total energy calculations for monolayers on the Cu-O substrate. STM simulations for alternating and single chirality monolayers have subtle differences which indicate that the experimentally observed surface is one containing molecules with alternating chirality, that is racemicity within the unit cell.


Asunto(s)
Cobre/química , Porfirinas/química , Adsorción , Teoría Cuántica , Propiedades de Superficie
12.
Adv Sci (Weinh) ; 10(22): e2300223, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37199683

RESUMEN

Molecule-based functional devices may take advantage of surface-mediated spin state bistability. Whereas different spin states in conventional spin crossover complexes are only accessible at temperatures well below room temperature, and the lifetimes of the high-spin state are relatively short, a different behavior exhibited by prototypical nickel phthalocyanine is shown here. Direct interaction of the organometallic complex with a copper metal electrode mediates the coexistence of a high spin and a low spin state within the 2D molecular array. The spin state bistability is extremely non-volatile, since no external stimuli are required to preserve it. It originates from the surface-induced axial displacement of the functional nickel cores, which generates two stable local minima. Spin state unlocking and the full conversion to the low spin state are only possible by a high temperature stimulus. This spin state transition is accompanied by distinct changes in the molecular electronic structure that might facilitate the state readout at room temperature, as evidenced by valence spectroscopy. The non-volatility of the high spin state up to elevated temperatures and the controllable spin bistability render the system extremely intriguing for applications in molecule-based information storage devices.

13.
J Phys Condens Matter ; 35(47)2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37586386

RESUMEN

The adsorption of heptacene (7 A) on Cu(110) and Cu(110)-(2 × 1)-O was studied with scanning tunneling microscopy, photoemission orbital tomography and density functional calculations to reveal the influence of surface passivation on the molecular geometry and electronic states. We found that the charge transfer into the 7 A molecules on Cu(110) is completely suppressed for the oxygen-modified Cu surface. The molecules are aligned along the Cu-O rows and uncharged. They are tilted due to the geometry enforced by the substrate and the ability to maximize intermolecular π-π overlap, which leads to strong π-band dispersion. The HOMO-LUMO gap of these decoupled molecules is significantly larger than that reported on weakly interacting metal surfaces. Finally, the Cu-O stripe phase was used as a template for nanostructured molecular growth and to assess possible confinement effects.

14.
Nat Commun ; 13(1): 5148, 2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36055995

RESUMEN

When a molecule interacts chemically with a metal surface, the orbitals of the molecule hybridise with metal states to form the new eigenstates of the coupled system. Spatial overlap and energy matching are determining parameters of the hybridisation. However, since every molecular orbital does not only have a characteristic spatial shape, but also a specific momentum distribution, one may additionally expect a momentum matching condition; after all, each hybridising wave function of the metal has a defined wave vector, too. Here, we report photoemission orbital tomography measurements of hybrid orbitals that emerge from molecular orbitals at a molecule-on-metal interface. We find that in the hybrid orbitals only those partial waves of the original orbital survive which match the metal band structure. Moreover, we find that the conversion of the metal's surface state into a hybrid interface state is also governed by momentum matching constraints. Our experiments demonstrate the possibility to measure hybridisation momentum-selectively, thereby enabling deep insights into the complicated interplay of bulk states, surface states, and molecular orbitals in the formation of the electronic interface structure at molecule-on-metal hybrid interfaces.

15.
Sci Adv ; 8(29): eabn0819, 2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35867796

RESUMEN

Tracing the modifications of molecules in surface chemical reactions benefits from the possibility to image their orbitals. While delocalized frontier orbitals with π character are imaged routinely with photoemission orbital tomography, they are not always sensitive to local chemical modifications, particularly the making and breaking of bonds at the molecular periphery. For such bonds, σ orbitals would be far more revealing. Here, we show that these orbitals can indeed be imaged in a remarkably broad energy range and that the plane wave approximation, an important ingredient of photoemission orbital tomography, is also well fulfilled for these orbitals. This makes photoemission orbital tomography a unique tool for the detailed analysis of surface chemical reactions. We demonstrate this by identifying the reaction product of a dehalogenation and cyclodehydrogenation reaction.

16.
J Phys Chem C Nanomater Interfaces ; 126(10): 5036-5045, 2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35330758

RESUMEN

Hexacene, composed of six linearly fused benzene rings, is an organic semiconductor material with superior electronic properties. The fundamental understanding of the electronic and chemical properties is prerequisite to any possible application in devices. We investigate the orientation and interface properties of highly ordered hexacene monolayers on Ag(110) and Cu(110) with X-ray photoemission spectroscopy (XPS), photoemission orbital tomography (POT), X-ray absorption spectroscopy (XAS), low-energy electron diffraction (LEED), scanning tunneling microscopy (STM), and density functional theory (DFT). We find pronounced differences in the structural arrangement of the molecules and the electronic properties at the metal/organic interfaces for the two substrates. While on Cu(110) the molecules adsorb with their long molecular axis parallel to the high symmetry substrate direction, on Ag(110), hexacene adsorbs in an azimuthally slightly rotated geometry with respect to the metal rows of the substrate. In both cases, molecular planes are oriented parallel to the substrate. A pronounced charge transfer from both substrates to different molecular states affects the effective charge of different C atoms of the molecule. Through analysis of experimental and theoretical data, we found out that on Ag(110) the LUMO of the molecule is occupied through charge transfer from the metal, whereas on Cu(110) even the LUMO+1 receives a charge. Interface dipoles are determined to a large extent by the push-back effect, which are also found to differ significantly between 6A/Ag(110) and 6A/Cu(110).

17.
ACS Nano ; 16(10): 17435-17443, 2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36239301

RESUMEN

Polycyclic aromatic compounds with fused benzene rings offer an extraordinary versatility as next-generation organic semiconducting materials for nanoelectronics and optoelectronics due to their tunable characteristics, including charge-carrier mobility and optical absorption. Nonplanarity can be an additional parameter to customize their electronic and optical properties without changing the aromatic core. In this work, we report a combined experimental and theoretical study in which we directly observe large, geometry-induced modifications in the frontier orbitals of a prototypical dye molecule when adsorbed on an atomically thin dielectric interlayer on a metallic substrate. Experimentally, we employ angle-resolved photoemission experiments, interpreted in the framework of the photoemission orbital tomography technique. We demonstrate its sensitivity to detect geometrical bends in adsorbed molecules and highlight the role of the photon energy used in experiment for detecting such geometrical distortions. Theoretically, we conduct density functional calculations to determine the geometric and electronic structure of the adsorbed molecule and simulate the photoemission angular distribution patterns. While we found an overall good agreement between experimental and theoretical data, our results also unveil limitations in current van der Waals corrected density functional approaches for such organic/dielectric interfaces. Hence, photoemission orbital tomography provides a vital experimental benchmark for such systems. By comparison with the state of the same molecule on a metallic substrate, we also offer an explanation why the adsorption on the dielectric induces such large bends in the molecule.

18.
Angew Chem Weinheim Bergstr Ger ; 134(20): e202201916, 2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38505699

RESUMEN

Uncommon metal oxidation states in porphyrinoid cofactors are responsible for the activity of many enzymes. The F430 and P450nor co-factors, with their reduced NiI- and FeIII-containing tetrapyrrolic cores, are prototypical examples of biological systems involved in methane formation and in the reduction of nitric oxide, respectively. Herein, using a comprehensive range of experimental and theoretical methods, we raise evidence that nickel tetraphenyl porphyrins deposited in vacuo on a copper surface are reactive towards nitric oxide disproportionation at room temperature. The interpretation of the measurements is far from being straightforward due to the high reactivity of the different nitrogen oxides species (eventually present in the residual gas background) and of the possible reaction intermediates. The picture is detailed in order to disentangle the challenging complexity of the system, where even a small fraction of contamination can change the scenario.

19.
J Am Chem Soc ; 133(9): 3056-62, 2011 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-21309570

RESUMEN

During the last years, self-assembled organic nanostructures have been recognized as a proper fundament for several electrical and optical applications. In particular, phenylenes deposited on muscovite mica have turned out to be an outstanding material combination. They tend to align parallel to each other forming needlelike structures. In that way, they provide the key for macroscopic highly polarized emission, waveguiding, and lasing. The resulting anisotropy has been interpreted so far by an induced dipole originating from the muscovite mica substrate. Based on a combined experimental and theoretical approach, we present an alternative growth model being able to explain molecular adsorption on sheet silicates in terms of molecule-surface interactions only. By a comprehensive comparison between experiments and simulations, we demonstrate that geometrical changes in the substrate surface or molecule lead to different molecular adsorption geometries and needle directions which can be predicted by our growth model.

20.
Phys Chem Chem Phys ; 13(9): 3604-11, 2011 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-21279208

RESUMEN

Well-ordered and oriented monolayers of conjugated organic molecules can offer new perspectives on surface bonding. We will demonstrate the importance of the momentum distribution, or symmetry, of the adsorbate molecules' π orbitals in relation to the states available for hybridization at the metal surface. Here, the electronic band structure of the first monolayer of sexiphenyl on Cu(110) has been examined in detail with angle-resolved ultraviolet photoemission spectroscopy over a large momentum range and will be compared to measurements of a multilayer thin film and to density functional calculations. In the monolayer, the one-dimensional intramolecular band structure can still be recognized, allowing an accurate determination of orbital modification upon bonding and the relative energetic positions of the electronic levels. It is seen that the character of the molecular π orbitals is largely maintained despite strong mixing between Cu and molecular states and that the lowest unoccupied molecular orbital (LUMO) is filled by hybridization with Cu s,p states rather than through a charge transfer process. It is also shown that the momentum distribution of the substrate states involved and the periodicity of the molecular overlayer play a large role in the final E(k) distribution of the hybrid states. The distinct momentum distribution of the LUMO, interacting with the Cu substrate s,p valence bands around the gap in the surface projection of the bulk band structure, make this system a particularly illustrative example of momentum resolved hybridization. This system demonstrates that, for hybridization to occur, not only do states require overlap in energy and space, but also in momentum.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA