Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(22)2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36430292

RESUMEN

Excess plasma lipid levels are a risk factor for various cardiometabolic disorders. Studies have shown that improving dyslipidemia lowers the progression of these disorders. In this study, we investigated the role of ATP-binding cassette transporter C10 (ABCC10) in regulating lipid metabolism. Our data indicate that deletion of the Abcc10 gene in male mice results in lower plasma and intestinal triglycerides by around 38% and 36%, respectively. Furthermore, deletion of ABCC10 ameliorates diet-induced obesity in mice and leads to a better response during insulin and glucose tolerance tests. Unexpectedly, ABCC10 deficiency does not affect triglyceride levels or atherosclerosis in ApoE-deficient mice. In addition, our studies demonstrate low oleate uptake by enterocytes (~25-30%) and less absorption (~37%) of triglycerides in the small intestine of ABCC10 knockout mice. Deletion of the Abcc10 gene also alters several lipid metabolism genes in the intestine, suggesting that ABCC10 regulates dietary fat absorption, which may contribute to diet-induced obesity in mice.


Asunto(s)
Aterosclerosis , Dieta , Ratones , Masculino , Animales , Obesidad/genética , Obesidad/prevención & control , Aterosclerosis/genética , Aterosclerosis/prevención & control , Triglicéridos/metabolismo , Ratones Noqueados , Adenosina Trifosfato
2.
Nutrients ; 15(2)2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36678211

RESUMEN

COVID-19 infection can spread in the host body without any adequate immune response. Zinc is an essential trace element with strong immunoregulatory and antiviral properties and its deficiency might lead to inflammation and oxidative stress. The aim of the current study was to determine the association of serum zinc and inflammatory markers with the severity of COVID-19 infection. This was a prospective observational study in which 123 COVID-19-positive adult patients and 48 controls were recruited. The initial comparative analysis was conducted between COVID-19 patients and controls. COVID-19-positive patients were further divided into three different groups (mild, moderate, and severe) based on the severity of COVID-19 infection. COVID-19 patients showed significantly lower serum zinc levels (8.8 ± 2.3 µmol/L) compared to healthy controls (11.9 ± 1.8 µmol/L). There was a negative correlation between serum zinc levels and the severity of COVID-19 infection (r = −0.584, p < 0.0001) and this effect was independent of age (r = −0.361, p < 0.0001). Furthermore, inflammatory markers showed a positive correlation with the severity of COVID-19 infection and a negative correlation with the levels of serum zinc. The study demonstrated an association between COVID-19 infection with low serum zinc levels and elevated inflammatory markers. Further studies to assess the significance of this observation are needed, which may justify zinc supplementation to mitigate the severity of COVID-19 infection.


Asunto(s)
COVID-19 , Oligoelementos , Humanos , Adulto , SARS-CoV-2 , Inflamación , Zinc
3.
Nutrients ; 14(17)2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36079898

RESUMEN

Saturated free fatty acids (FFAs) such as palmitate in the circulation are known to cause endoplasmic reticulum (ER) stress and insulin resistance in peripheral tissues. In addition to protein kinase B (AKT) signaling, extracellular signal-regulated kinase (ERK) has been implicated in the development of insulin resistance. However, there are conflicting data regarding role of ERK signaling in ER stress-induced insulin resistance. In this study, we investigated the effects of ER stress on insulin resistance and ERK phosphorylation in Huh-7 cells and evaluated how oleate prevents palmitate-mediated ER stress. Treatment with insulin resulted in an increase of 38-45% in the uptake of glucose in control cells compared to non-insulin-treated control cells, along with an increase in the phosphorylation of AKT and ERK. We found that treatment with palmitate increased the expression of ER stress genes, including the splicing of X box binding protein 1 (XBP1) mRNA. At the same time, we observed a decrease in insulin-mediated uptake of glucose and ERK phosphorylation in Huh-7 cells, without any change in AKT phosphorylation. Supplementation of oleate along with palmitate mitigated the palmitate-induced ER stress but did not affect insulin-mediated glucose uptake or ERK phosphorylation. The findings of this study suggest that palmitate reduces insulin-mediated ERK phosphorylation in liver cells and this effect is independent of fatty-acid-induced ER stress.


Asunto(s)
Resistencia a la Insulina , Insulina , Estrés del Retículo Endoplásmico , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Humanos , Insulina/metabolismo , Insulina/farmacología , Hígado/metabolismo , Ácido Oléico/metabolismo , Ácido Oléico/farmacología , Palmitatos/metabolismo , Palmitatos/farmacología , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo
4.
Nutrients ; 14(16)2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-36014919

RESUMEN

Lipid rafts in cell plasma membranes play a critical role in the life cycle of many viruses. However, the involvement of membrane cholesterol-rich lipid rafts in the entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into target cells is not well known. In this study, we investigated whether the presence of cholesterol-rich microdomains is required for the entry of SARS-CoV-2 into host cells. Our results show that depletion of cholesterol in the rafts by methyl-beta-cyclodextrin (MßCD) treatment impaired the expression of the cell surface receptor angiotensin-converting enzyme 2 (ACE2), resulting in a significant increase in SARS-CoV-2 entry into cells. The effects exerted by MßCD could be substantially reversed by exogenous cholesterol replenishment. In contrast, disturbance of intracellular cholesterol homeostasis by statins or siRNA knockdown of key genes involved in the cholesterol biosynthesis and transport pathways reduced SARS-CoV-2 entry into cells. Our study also reveals that SREBP2-mediated cholesterol biosynthesis is involved in the process of SARS-CoV-2 entry in target cells. These results suggest that the host membrane cholesterol-enriched lipid rafts and cellular cholesterol homeostasis are essential for SARS-CoV-2 entry into cells. Pharmacological manipulation of intracellular cholesterol might provide new therapeutic strategies to alleviate SARS-CoV-2 entry into cells.


Asunto(s)
COVID-19 , SARS-CoV-2 , Colesterol/metabolismo , Homeostasis , Humanos , Microdominios de Membrana , Internalización del Virus
5.
Front Biosci (Landmark Ed) ; 26(5): 11-21, 2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-34027646

RESUMEN

Intestinal and hepatic lipid metabolism plays an essential role in regulating plasma lipid levels. These lipids are mobilized on apolipoprotein B (apoB)-containing lipoproteins and their plasma homeostasis is maintained by balancing production and catabolism. Microsomal triglyceride transfer protein (MTP) which is expressed mainly in the intestine and liver plays an essential role in regulating the assembly and secretion of apoB-lipoproteins. Any imbalance in the production or clearance of lipoproteins leads to hyperlipidemia which is a major risk factor for atherosclerosis, obesity, diabetes, and metabolic syndrome. Here, we identify a new role of inositol-requiring transmembrane kinase/endoribonuclease 1α (IRE1α) in the regulation of plasma lipids. We generated intestine specific IRE1α knockout mice to study whether intestinal IRE1α regulates plasma lipids by modulating intestinal lipid absorption. Intestine specific deletion of Ire1a gene in mice fed chow diet, significantly reduced plasma cholesterol and triglycerides by 29% and 43% in Ire1a-⁣/- mice (P < 0.01 & P < 0.001, respectively). These changes were not associated with any alteration of MTP activity nor its mRNA expression. On the other hand, Western diet increased plasma triglyceride by 37% (P < 0.01) without affecting total plasma cholesterol in Ire1a-⁣/- mice. Interestingly, this effect was associated with a significant increase in the intestinal MTP activity and its mRNA expression (25%, P < 0.01 and 70%, P < 0.05, respectively). Collectively, our findings reveal key role of intestinal IRE1α in the regulation of plasma lipids that may provide a therapeutic target for disorders of lipid metabolism.


Asunto(s)
Dieta , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Inositol/química , Lípidos/sangre , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Apolipoproteínas B/metabolismo , Proteínas Portadoras , Colesterol/metabolismo , Eliminación de Gen , Absorción Intestinal , Intestinos/metabolismo , Metabolismo de los Lípidos/fisiología , Lipoproteínas , Hígado/metabolismo , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Empalme del ARN , ARN Mensajero/metabolismo , Triglicéridos/metabolismo , Respuesta de Proteína Desplegada
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA