RESUMEN
Understanding how potent neutralizing antibodies (NAbs) inhibit SARS-CoV-2 is critical for effective therapeutic development. We previously described BD-368-2, a SARS-CoV-2 NAb with high potency; however, its neutralization mechanism is largely unknown. Here, we report the 3.5-Å cryo-EM structure of BD-368-2/trimeric-spike complex, revealing that BD-368-2 fully blocks ACE2 recognition by occupying all three receptor-binding domains (RBDs) simultaneously, regardless of their "up" or "down" conformations. Also, BD-368-2 treats infected adult hamsters at low dosages and at various administering windows, in contrast to placebo hamsters that manifested severe interstitial pneumonia. Moreover, BD-368-2's epitope completely avoids the common binding site of VH3-53/VH3-66 recurrent NAbs, evidenced by tripartite co-crystal structures with RBDs. Pairing BD-368-2 with a potent recurrent NAb neutralizes SARS-CoV-2 pseudovirus at pM level and rescues mutation-induced neutralization escapes. Together, our results rationalized a new RBD epitope that leads to high neutralization potency and demonstrated BD-368-2's therapeutic potential in treating COVID-19.
Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Betacoronavirus/inmunología , Infecciones por Coronavirus/patología , Neumonía Viral/patología , Animales , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/química , Anticuerpos Antivirales/uso terapéutico , Reacciones Antígeno-Anticuerpo , Sitios de Unión , COVID-19 , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/virología , Cricetinae , Microscopía por Crioelectrón , Modelos Animales de Enfermedad , Epítopos/química , Epítopos/inmunología , Femenino , Pulmón/patología , Masculino , Simulación de Dinámica Molecular , Pandemias , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/virología , Estructura Cuaternaria de Proteína , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/inmunologíaRESUMEN
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of coronavirus disease 2019 (COVID-19), which has become a public health emergency of international concern1. Angiotensin-converting enzyme 2 (ACE2) is the cell-entry receptor for severe acute respiratory syndrome coronavirus (SARS-CoV)2. Here we infected transgenic mice that express human ACE2 (hereafter, hACE2 mice) with SARS-CoV-2 and studied the pathogenicity of the virus. We observed weight loss as well as virus replication in the lungs of hACE2 mice infected with SARS-CoV-2. The typical histopathology was interstitial pneumonia with infiltration of considerable numbers of macrophages and lymphocytes into the alveolar interstitium, and the accumulation of macrophages in alveolar cavities. We observed viral antigens in bronchial epithelial cells, macrophages and alveolar epithelia. These phenomena were not found in wild-type mice infected with SARS-CoV-2. Notably, we have confirmed the pathogenicity of SARS-CoV-2 in hACE2 mice. This mouse model of SARS-CoV-2 infection will be valuable for evaluating antiviral therapeutic agents and vaccines, as well as understanding the pathogenesis of COVID-19.
Asunto(s)
Betacoronavirus/patogenicidad , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/virología , Pulmón/patología , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral/patología , Neumonía Viral/virología , Transgenes , Enzima Convertidora de Angiotensina 2 , Animales , Antígenos Virales/inmunología , Antígenos Virales/metabolismo , Betacoronavirus/inmunología , Betacoronavirus/metabolismo , Bronquios/patología , Bronquios/virología , COVID-19 , Infecciones por Coronavirus/inmunología , Modelos Animales de Enfermedad , Células Epiteliales/patología , Células Epiteliales/virología , Femenino , Humanos , Inmunoglobulina G/inmunología , Pulmón/inmunología , Pulmón/virología , Linfocitos/inmunología , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/virología , Masculino , Ratones , Ratones Transgénicos , Pandemias , Neumonía Viral/inmunología , Receptores de Complemento 3d/genética , Receptores de Complemento 3d/metabolismo , SARS-CoV-2 , Replicación Viral , Pérdida de PesoRESUMEN
The coronavirus disease 2019 (COVID-19) pandemic is an ongoing global health concern, and effective antiviral reagents are urgently needed. Traditional Chinese medicine theory-driven natural drug research and development (TCMT-NDRD) is a feasible method to address this issue as the traditional Chinese medicine formulae have been shown effective in the treatment of COVID-19. Huashi Baidu decoction (Q-14) is a clinically approved formula for COVID-19 therapy with antiviral and anti-inflammatory effects. Here, an integrative pharmacological strategy was applied to identify the antiviral and anti-inflammatory bioactive compounds from Q-14. Overall, a total of 343 chemical compounds were initially characterized, and 60 prototype compounds in Q-14 were subsequently traced in plasma using ultrahigh-performance liquid chromatography with quadrupole time-of-flight mass spectrometry. Among the 60 compounds, six compounds (magnolol, glycyrrhisoflavone, licoisoflavone A, emodin, echinatin, and quercetin) were identified showing a dose-dependent inhibition effect on the SARS-CoV-2 infection, including two inhibitors (echinatin and quercetin) of the main protease (Mpro), as well as two inhibitors (glycyrrhisoflavone and licoisoflavone A) of the RNA-dependent RNA polymerase (RdRp). Meanwhile, three anti-inflammatory components, including licochalcone B, echinatin, and glycyrrhisoflavone, were identified in a SARS-CoV-2-infected inflammatory cell model. In addition, glycyrrhisoflavone and licoisoflavone A also displayed strong inhibitory activities against cAMP-specific 3',5'-cyclic phosphodiesterase 4 (PDE4). Crystal structures of PDE4 in complex with glycyrrhisoflavone or licoisoflavone A were determined at resolutions of 1.54 Å and 1.65 Å, respectively, and both compounds bind in the active site of PDE4 with similar interactions. These findings will greatly stimulate the study of TCMT-NDRD against COVID-19.
Asunto(s)
COVID-19 , Humanos , Antivirales/farmacología , SARS-CoV-2 , Quercetina/farmacología , Antiinflamatorios/farmacología , Simulación del Acoplamiento MolecularRESUMEN
BACKGROUND: Influenza outbreaks have occurred frequently these years, especially in the summer of 2022 when the number of influenza cases in southern provinces of China increased abnormally. However, the exact evidence of the driving factors involved in the prodrome period is unclear, posing great difficulties for early and accurate prediction in practical work. METHODS: In order to avoid the serious interference of strict prevention and control measures on the analysis of influenza influencing factors during the COVID-19 epidemic period, only the impact of meteorological and air quality factors on influenza A (H3N2) in Xiamen during the non coronavirus disease 2019 (COVID-19) period (2013/01/01-202/01/24) was analyzed using the distribution lag non-linear model. Phylogenetic analysis of influenza A (H3N2) during 2013-2022 was also performed. Influenza A (H3N2) was predicted through a random forest and long short-term memory (RF-LSTM) model via actual and forecasted meteorological and influenza A (H3N2) values. RESULTS: Twenty nine thousand four hundred thirty five influenza cases were reported in 2022, accounting for 58.54% of the total cases during 2013-2022. A (H3N2) dominated the 2022 summer epidemic season, accounting for 95.60%. The influenza cases in the summer of 2022 accounted for 83.72% of the year and 49.02% of all influenza reported from 2013 to 2022. Among them, the A (H3N2) cases in the summer of 2022 accounted for 83.90% of all A (H3N2) reported from 2013 to 2022. Daily precipitation(20-50 mm), relative humidity (70-78%), low (≤ 3 h) and high (≥ 7 h) sunshine duration, air temperature (≤ 21 °C) and O3 concentration (≤ 30 µg/m3, > 85 µg/m3) had significant cumulative effects on influenza A (H3N2) during the non-COVID-19 period. The daily values of PRE, RHU, SSD, and TEM in the prodrome period of the abnormal influenza A (H3N2) epidemic (19-22 weeks) in the summer of 2022 were significantly different from the average values of the same period from 2013 to 2019 (P < 0.05). The minimum RHU value was 70.5%, the lowest TEM value was 16.0 °C, and there was no sunlight exposure for 9 consecutive days. The highest O3 concentration reached 164 µg/m3. The range of these factors were consistent with the risk factor range of A (H3N2). The common influenza A (H3N2) variant genotype in 2022 was 3 C.2a1b.2a.1a. It was more accurate to predict influenza A (H3N2) with meteorological forecast values than with actual values only. CONCLUSION: The extreme weather conditions of sustained low temperature and wet rain may have been important driving factors for the abnormal influenza A (H3N2) epidemic. A low vaccination rate, new mutated strains, and insufficient immune barriers formed by natural infections may have exacerbated this epidemic. Meteorological forecast values can aid in the early prediction of influenza outbreaks. This study can help relevant departments prepare for influenza outbreaks during extreme weather, provide a scientific basis for prevention strategies and risk warnings, better adapt to climate change, and improve public health.
Asunto(s)
COVID-19 , Subtipo H3N2 del Virus de la Influenza A , Gripe Humana , Humanos , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/aislamiento & purificación , Gripe Humana/epidemiología , Gripe Humana/virología , China/epidemiología , COVID-19/epidemiología , COVID-19/virología , Estaciones del Año , Filogenia , Epidemias , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificaciónRESUMEN
Two new sesquiterpenoids, named 9,10-dihydroxy-albaflavenone (1) and 5-hydroxy-albaflavenone (2) were isolated from Dictyophora indusiata. Their structures and absolute configurations were determined by NMR, ECD and HRESIMS. Compounds 1 and 2 showed anti-inflammatory activity by inhibiting TNF-α and NO secretion to varying degrees.
Asunto(s)
Basidiomycota , Sesquiterpenos , Basidiomycota/química , Sesquiterpenos/farmacología , Factor de Necrosis Tumoral alfaRESUMEN
As an edible and medicinal fungus, Dictyophora indusiata is well-known for its morphological elegance, distinctive taste, high nutritional value, and therapeutic properties. In this study, eighteen compounds (1-18) were isolated and identified from the ethanolic extract of D. indusiata; four (1-4) were previously undescribed. Their molecular structures and absolute configurations were determined via a comprehensive analysis of spectroscopic data (1D/2D NMR, HRESIMS, ECD, and XRD). Seven isolated compounds were examined for their anti-inflammatory activities using an in vitro model of lipopolysaccharide (LPS)-simulated BV-2 microglial cells. Compound 3 displayed the strongest inhibitory effect on tumor necrosis factor-α (TNF-α) expression, with an IC50 value of 11.9 µM. Compound 16 exhibited the highest inhibitory activity on interleukin-6 (IL-6) production, with an IC50 value of 13.53 µM. Compound 17 showed the most potent anti-inflammatory capacity by inhibiting the LPS-induced generation of nitric oxide (NO) (IC50: 10.86 µM) and interleukin-1ß (IL-1ß) (IC50: 23.9 µM) and by significantly suppressing induced nitric oxide synthase (iNOS) and phosphorylated nuclear factor-kappa B inhibitor-α (p-IκB-α) expression at concentrations of 5 µM and 20 µM, respectively (p < 0.01). The modes of interactions between the isolated compounds and the target inflammation-related proteins were investigated in a preliminary molecular docking study. These results provided insight into the chemodiversity and potential anti-inflammatory activities of metabolites with small molecular weights in the mushroom D. indusiata.
Asunto(s)
Agaricales , Agaricales/metabolismo , Lipopolisacáridos/farmacología , FN-kappa B/metabolismo , Simulación del Acoplamiento Molecular , Antiinflamatorios/química , Óxido Nítrico/metabolismoRESUMEN
Physcion is a characteristic component of the traditional herb rhubarb with diverse pharmacological activities that has been commercially approved as an herbal fungicide. Nevertheless, its extremely low contents, costly purification procedure and geographically restricted planting severely hinder its application. Here, a cell factory was constructed in the filamentous fungus Aspergillus terreus for physcion production via microbial fermentation by integrating a pathway-modified emodin accumulation module and a position-selective emodin methylation module. Specifically, 1.71 g/L emodin accumulated when the transcriptional activator GedR and the emodin-1-OH-O-methyltransferase GedA in the geodin biosynthetic pathway were overexpressed and knocked out, respectively. Subsequently, potential emodin-3-OH-O-methyltransferase candidates were enzymatically screened in vitro and introduced into the emodin-accumulating mutant in vivo to generate a physcion-producing strain showing the highest titre of 6.3 g/L in fed-batch fermentation. Thus, our study provides an alternative strategy for the highly efficient, economical production of physcion and a representative example for microbial synthetic biology.
Asunto(s)
Emodina , Fungicidas Industriales , Plantas , Metiltransferasas , AntraquinonasRESUMEN
Mycophenolic acid (MPA) from filamentous fungi is the first natural product antibiotic to be isolated and crystallized, and a first-line immunosuppressive drug for organ transplantations and autoimmune diseases. However, some key biosynthetic mechanisms of such an old and important molecule have remained unclear. Here, we elucidate the MPA biosynthetic pathway that features both compartmentalized enzymatic steps and unique cooperation between biosynthetic and ß-oxidation catabolism machineries based on targeted gene inactivation, feeding experiments in heterologous expression hosts, enzyme functional characterization and kinetic analysis, and microscopic observation of protein subcellular localization. Besides identification of the oxygenase MpaB' as the long-sought key enzyme responsible for the oxidative cleavage of the farnesyl side chain, we reveal the intriguing pattern of compartmentalization for the MPA biosynthetic enzymes, including the cytosolic polyketide synthase MpaC' and O-methyltransferase MpaG', the Golgi apparatus-associated prenyltransferase MpaA', the endoplasmic reticulum-bound oxygenase MpaB' and P450-hydrolase fusion enzyme MpaDE', and the peroxisomal acyl-coenzyme A (CoA) hydrolase MpaH'. The whole pathway is elegantly comediated by these compartmentalized enzymes, together with the peroxisomal ß-oxidation machinery. Beyond characterizing the remaining outstanding steps of the MPA biosynthetic steps, our study highlights the importance of considering subcellular contexts and the broader cellular metabolism in natural product biosynthesis.
Asunto(s)
Ácido Micofenólico/metabolismo , Aspergillus oryzae/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Redes y Vías Metabólicas , Oxidación-Reducción , Penicillium/metabolismo , Peroxisomas/metabolismo , Fracciones Subcelulares/enzimología , Fracciones Subcelulares/metabolismoRESUMEN
Plants must balance both beneficial (symbiotic) and pathogenic challenges from microorganisms, the former benefitting the plant and agriculture and the latter causing disease and economic harm. Plant innate immunity describes a highly conserved set of defense mechanisms that play pivotal roles in sensing immunogenic signals associated with both symbiotic and pathogenic microbes and subsequent downstream activation of signaling effector networks that protect the plant. An intriguing question is how the innate immune system distinguishes "friends" from "foes". Here, we summarize recent advances in our understanding of the role and spectrum of innate immunity in recognizing and responding to different microbes. In addition, we also review some of the strategies used by microbes to manipulate plant signaling pathways and thus evade immunity, with emphasis on the use of effector proteins and micro-RNAs (miRNAs). Furthermore, we discuss potential questions that need addressing to advance the field of plant-microbe interactions.
Asunto(s)
MicroARNs , Inmunidad de la Planta , Inmunidad Innata , MicroARNs/genética , Enfermedades de las Plantas , Plantas/genética , SimbiosisRESUMEN
Gastric cancer (GC) is the fifth most common cancer and the third deadliest cancer in the world, and the occurrence and development of GC are influenced by epigenetics. Methyltransferase-like 3 (METTL3) is a prominent RNA n6-adenosine methyltransferase (m6A) that plays an important role in tumor growth by controlling the work of RNA. This study aimed to reveal the biological function and molecular mechanism of METTL3 in GC. The expression level of METTL3 in GC tissues and cells was detected by qPCR, Western blot and immunohistochemistry, and the expression level and prognosis of METTL3 were predicted in public databases. CCK-8, colony formation, transwell and wound healing assays were used to study the effect of METTL3 on GC cell proliferation and migration. In addition, the enrichment effect of METTL3 on DEK mRNA was detected by the RIP experiment, the m6A modification effect of METTL3 on DEK was verified by the MeRIP experiment and the mRNA half-life of DEK when METTL3 was overexpressed was detected. The dot blot assay detects m6A modification at the mRNA level. The effect of METTL3 on cell migration ability in vivo was examined by tail vein injection of luciferase-labeled cells. The experimental results showed that METTL3 was highly expressed in GC tissues and cells, and the high expression of METTL3 was associated with a poor prognosis. In addition, the m6A modification level of mRNA was higher in GC tissues and GC cell lines. Overexpression of METTL3 in MGC80-3 cells and AGS promoted cell proliferation and migration, while the knockdown of METTL3 inhibited cell proliferation and migration. The results of in vitro rescue experiments showed that the knockdown of DEK reversed the promoting effects of METTL3 on cell proliferation and migration. In vivo experiments showed that the knockdown of DEK reversed the increase in lung metastases caused by the overexpression of METTL3 in mice. Mechanistically, the results of the RIP experiment showed that METTL3 could enrich DEK mRNA, and the results of the MePIP and RNA half-life experiments indicated that METTL3 binds to the 3'UTR of DEK, participates in the m6A modification of DEK and promotes the stability of DEK mRNA. Ultimately, we concluded that METTL3 promotes GC cell proliferation and migration by stabilizing DEK mRNA expression. Therefore, METTL3 is a potential biomarker for GC prognosis and a therapeutic target.
Asunto(s)
Neoplasias Gástricas , Adenosina/análogos & derivados , Adenosina/metabolismo , Animales , Transformación Celular Neoplásica , Metiltransferasas/genética , Metiltransferasas/metabolismo , Ratones , ARN Mensajero/genética , ARN Mensajero/metabolismo , Neoplasias Gástricas/patologíaRESUMEN
Domestic cats, an important companion animal, can be infected with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). This has aroused concern regarding the ability of domestic cats to spread the virus that causes coronavirus disease 2019. We systematically demonstrated the pathogenesis and transmissibility of SARS-CoV-2 in cats. Serial passaging of the virus between cats dramatically attenuated the viral transmissibility, likely owing to variations of the amino acids in the receptor-binding domain sites of angiotensin-converting enzyme 2 between humans and cats. These findings provide insight into the transmissibility of SARS-CoV-2 in cats and information for protecting the health of humans and cats.
Asunto(s)
COVID-19/transmisión , COVID-19/veterinaria , SARS-CoV-2/patogenicidad , Aminoácidos/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , COVID-19/metabolismo , Gatos , Línea Celular , Chlorocebus aethiops , Femenino , Humanos , Masculino , Células VeroRESUMEN
The C-10-C-4a bond cleavage of anthraquinone is believed to be a crucial step in fungal seco-anthraquinone biosynthesis and has long been proposed as a classic Baeyer-Villiger oxidation. Nonetheless, genetic, enzymatic, and chemical information on ring opening remains elusive. Here, a revised questin ring-opening mechanism was elucidated by in vivo gene disruption, in vitro enzymatic analysis, and 18O chasing experiments. It has been confirmed that the reductase GedF is responsible for the reduction of the keto group at C-10 in questin to a hydroxyl group with the aid of NADPH. The C-10-C-4a bond of the resultant questin hydroquinone is subsequently cleaved by the atypical cofactor-free dioxygenase GedK, giving rise to desmethylsulochrin. This proposed bienzyme-catalytic and dioxygenation-mediated anthraquinone ring-opening reaction shows universality.
Asunto(s)
AntraquinonasRESUMEN
BACKGROUND: The unprecedented efficacy of chimeric antigen receptor T (CAR-T) cell immunotherapy of CD19+ B-cell malignancies has opened a new and useful way for the treatment of malignant tumors. Nonetheless, there are still formidable challenges in the field of CAR-T cell therapy, such as the biodistribution of CAR-T cells in vivo. METHODS: NALM-6, a human B-cell acute lymphoblastic leukemia (B-ALL) cell line, was used as target cells. CAR-T cells were injected into a mice model with or without target cells. Then we measured the distribution of CAR-T cells in mice. In addition, an exploratory clinical trial was conducted in 13 r/r B-cell non-Hodgkin lymphoma (B-NHL) patients, who received CAR-T cell infusion. The dynamic changes in patient blood parameters over time after infusion were detected by qPCR and flow cytometry. RESULTS: CAR-T cells still proliferated over time after being infused into the mice without target cells within 2 weeks. However, CAR-T cells did not increase significantly in the presence of target cells within 2 weeks after infusion, but expanded at week 6. In the clinical trial, we found that CAR-T cells peaked at 7-21 days after infusion and lasted for 420 days in peripheral blood of patients. Simultaneously, mild side effects were observed, which could be effectively controlled within 2 months in these patients. CONCLUSIONS: CAR-T cells can expand themselves with or without target cells in mice, and persist for a long time in NHL patients without serious side effects. TRIAL REGISTRATION: The registration date of the clinical trial is May 17, 2018 and the trial registration numbers is NCT03528421 .
Asunto(s)
Antígenos CD19/inmunología , Leucemia de Células B/terapia , Linfoma de Células B/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Receptores Quiméricos de Antígenos/metabolismo , Adulto , Animales , Línea Celular Tumoral , Femenino , Humanos , Inmunoterapia Adoptiva/métodos , Masculino , Ratones , Distribución TisularRESUMEN
We simulated 3 transmission modes, including close-contact, respiratory droplets and aerosol routes, in the laboratory. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can be highly transmitted among naive human angiotensin-converting enzyme 2 (hACE2) mice via close contact because 7 of 13 naive hACE2 mice were SARS-CoV-2 antibody seropositive 14 days after being introduced into the same cage with 3 infected-hACE2 mice. For respiratory droplets, SARS-CoV-2 antibodies from 3 of 10 naive hACE2 mice showed seropositivity 14 days after introduction into the same cage with 3 infected-hACE2 mice, separated by grids. In addition, hACE2 mice cannot be experimentally infected via aerosol inoculation until continued up to 25 minutes with high viral concentrations.
Asunto(s)
Betacoronavirus , Infecciones por Coronavirus/transmisión , Neumonía Viral/transmisión , Aerosoles , Canal Anal/virología , Enzima Convertidora de Angiotensina 2 , Animales , Anticuerpos Antivirales/sangre , Betacoronavirus/genética , Betacoronavirus/inmunología , Betacoronavirus/aislamiento & purificación , COVID-19 , Chlorocebus aethiops , Femenino , Humanos , Inmunoglobulina G/sangre , Pulmón/patología , Pulmón/virología , Masculino , Ratones , Ratones Transgénicos , Pandemias , Peptidil-Dipeptidasa A/genética , Faringe/virología , ARN Viral/aislamiento & purificación , Sistema Respiratorio/virología , Riesgo , SARS-CoV-2 , Organismos Libres de Patógenos Específicos , Factores de Tiempo , Células Vero , Carga Viral , Pérdida de PesoRESUMEN
Microtubule-interfering agents have been very useful both as biological tools in studying mitosis and as chemotherapeutic agents against cancer. It remains poorly understood how these agents converge on the spindle assembly checkpoint (SAC) to halt mitotic progression, while inhibiting microtubule dynamics by different mechanisms. Cells arrested at mitosis by various microtubule-interfering agents exhibit strikingly different defects in the mitotic spindle. However, all the arrested cells possess the 3F3/2 phosphoepitope at the sister kinetochores of chromosomes, indicating the decrease of tension across the paired kinetochores. In addition, microtubule-interfering agents result in a comparable reduction in the distance between sister kinetochores, suggesting that these agents decrease interkinetochore tension to similar degrees. Here, we discuss recent progress that suggests impairment of kinetochore-microtubule attachment and reduction of interkinetochore tension as common mechanisms underlying the persistent SAC activation in response to diverse microtubule-interfering agents.
Asunto(s)
Cinetocoros/fisiología , Microtúbulos/fisiología , Humanos , Mitosis/fisiología , Huso Acromático/genética , Huso Acromático/fisiologíaRESUMEN
Heterochromatin protein-1 (HP1) is a key component of heterochromatin. Reminiscent of the cohesin complex which mediates sister-chromatid cohesion, most HP1 proteins in mammalian cells are displaced from chromosome arms during mitotic entry, whereas a pool remains at the heterochromatic centromere region. The function of HP1 at mitotic centromeres remains largely elusive. Here, we show that double knockout (DKO) of HP1α and HP1γ causes defective mitosis progression and weakened centromeric cohesion. While mutating the chromoshadow domain (CSD) prevents HP1α from protecting sister-chromatid cohesion, centromeric targeting of HP1α CSD alone is sufficient to rescue the cohesion defects in HP1 DKO cells. Interestingly, HP1-dependent cohesion protection requires Haspin, an antagonist of the cohesin-releasing factor Wapl. Moreover, HP1α CSD directly binds the N-terminal region of Haspin and facilitates its centromeric localization. The need for HP1 in cohesion protection can be bypassed by centromeric targeting of Haspin or inhibiting Wapl activity. Taken together, these results reveal a redundant role for HP1α and HP1γ in the protection of centromeric cohesion through promoting Haspin localization at mitotic centromeres in mammalian cells.
Asunto(s)
Centrómero/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Heterocromatina/metabolismo , Animales , Centrómero/genética , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/genética , Técnicas de Inactivación de Genes , Células HeLa , Heterocromatina/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mamíferos , Mitosis/genética , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Transporte de ProteínasRESUMEN
Sister-chromatid cohesion mediated by the cohesin complex is fundamental for precise chromosome segregation in mitosis. Through binding the cohesin subunit Pds5, Wapl releases the bulk of cohesin from chromosome arms in prophase, whereas centromeric cohesin is protected from Wapl until anaphase onset. Strong centromere cohesion requires centromeric localization of the mitotic histone kinase Haspin, which is dependent on the interaction of its non-catalytic N-terminus with Pds5B. It remains unclear how Haspin fully blocks the Wapl-Pds5B interaction at centromeres. Here, we show that the C-terminal kinase domain of Haspin (Haspin-KD) binds and phosphorylates the YSR motif of Wapl (Wapl-YSR), thereby directly inhibiting the YSR motif-dependent interaction of Wapl with Pds5B. Cells expressing a Wapl-binding-deficient mutant of Haspin or treated with Haspin inhibitors show centromeric cohesion defects. Phospho-mimetic mutation in Wapl-YSR prevents Wapl from binding Pds5B and releasing cohesin. Forced targeting Haspin-KD to centromeres partly bypasses the need for Haspin-Pds5B interaction in cohesion protection. Taken together, these results indicate a kinase-dependent role for Haspin in antagonizing Wapl and protecting centromeric cohesion in mitosis.
Asunto(s)
Proteínas Portadoras/genética , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Segregación Cromosómica , Proteínas de Unión al ADN/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Factores de Transcripción/genética , Secuencias de Aminoácidos , Anafase , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centrómero/metabolismo , Centrómero/ultraestructura , Cromátides/metabolismo , Cromátides/ultraestructura , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Mutación , Proteínas Nucleares/metabolismo , Fosforilación , Profase , Unión Proteica , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Proto-Oncogénicas/metabolismo , Factores de Transcripción/metabolismo , CohesinasRESUMEN
CD19-directed chimeric antigen receptor T (CAR-T) cells have been widely reported in the therapy of relapsed/refractory non-Hodgkin lymphoma (NHL). Both cryopreserved and fresh formulations of CAR-T have been used in previous studies. However, quite a few studies investigated the effects of cryopreservation on the clinical outcomes of CAR-T cells. Here we retrospectively analyzed a phase I/II clinical trial of CD19-directed CAR-T cells in NHL patients, and compared the safety and efficacy of cryopreserved and fresh CAR-T products. All CAR-T cells were prepared using the same manufacturing process except the formulation step. Fifteen patients were infused with cryopreserved/thawed CAR-T cells, and 8 patients were treated with fresh CAR-T cells. Comparative overall response rates and in vivo expansion kinetics of CAR-T cells were observed between the cryopreserved cohort and fresh cohort. The occurrence rates of cytokine release syndrome and neurotoxicity were also similar in both groups. Patients in the fresh cohort showed higher incidence of acute hematological toxicity including anemia, hypoleukemia, and thrombocytopenia. This study demonstrated that cryopreservation showed negligible effects on the efficacy of CD19-directed CAR-T cells, but endowed CAR-T cells with higher safety in NHL patients, supporting the application of cryopreserved CAR-T products for NHL therapy.
Asunto(s)
Linfoma no Hodgkin , Receptores Quiméricos de Antígenos , Criopreservación/métodos , Humanos , Inmunoterapia Adoptiva , Linfoma no Hodgkin/terapia , Receptores de Antígenos de Linfocitos T/genética , Estudios Retrospectivos , Linfocitos TRESUMEN
4-Cresol is not only a significant synthetic intermediate for production of many aromatic chemicals, but also a priority environmental pollutant because of its toxicity to higher organisms. In our previous studies, a gene cluster implicated to be involved in 4-cresol catabolism, creCDEFGHIR, was identified in Corynebacterium glutamicum and partially characterized in vivo. In this work, we report on the discovery of a novel 4-cresol biodegradation pathway that employs phosphorylated intermediates. This unique pathway initiates with the phosphorylation of the hydroxyl group of 4-cresol, which is catalyzed by a novel 4-methylbenzyl phosphate synthase, CreHI. Next, a unique class I P450 system, CreJEF, specifically recognizes phosphorylated intermediates and successively oxidizes the aromatic methyl group into carboxylic acid functionality via alcohol and aldehyde intermediates. Moreover, CreD (phosphohydrolase), CreC (alcohol dehydrogenase), and CreG (aldehyde dehydrogenase) were also found to be required for efficient oxidative transformations in this pathway. Steady-state kinetic parameters (Km and kcat) for each catabolic step were determined, and these results suggest that kinetic controls serve a key role in directing the metabolic flux to the most energy effective route.
Asunto(s)
Corynebacterium glutamicum/genética , Cresoles/metabolismo , Redes y Vías Metabólicas , Adenosina Trifosfato/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Biocatálisis , Corynebacterium glutamicum/enzimología , Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/genética , Cinética , Oxidorreductasas/química , Oxidorreductasas/genética , Monoéster Fosfórico Hidrolasas/química , Monoéster Fosfórico Hidrolasas/genética , Fosforilación , Fosfotransferasas/química , Fosfotransferasas/genéticaRESUMEN
Age at primary infection with respiratory syncytial virus (RSV) is a crucial factor in determining the outcome of reinfection. However, how neonatal RSV infection affects the immune system and renders the host more susceptible to reinfection in later life is poorly understood. In the present study, by using BALB/c mice that were first infected with RSV as neonates, the role of γδ T cells in the development of airway inflammation during reinfection in adulthood was investigated. We found that neonatal RSV infection resulted in an aggravated infiltration of mononuclear cells in bronchoalveolar lavage (BAL) fluids, in parallel with a significant increase in the levels of type 2 cytokines in lungs on day 4 after reinfection. Since the numbers of total γδ T cells as well as activated γδ T cells, particularly IL-4-, IL-5-, and IL-13-producing γδ T cells, were enhanced markedly in the lungs of neonatally primed mice, we speculate that γδ T cells might participate in the augmented airway inflammation seen during reinfection. Indeed, depletion of γδ T cells attenuated the severity of lung histopathology during reinfection. Meanwhile, treatment of neonatal mice with anti-TCRδ mAb diminished not only the numbers of neutrophils, eosinophils, and lymphocytes, but also the levels of IL-4, IL-5, and IL-13 in the lungs after reinfection in adulthood, suggesting that γδ T cells, particularly Th2-type γδ T cells might play a critical role in exacerbating the pulmonary tissue pathology during reinfection of adult mice that were first infected as neonates.