Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Plant Cell ; 35(9): 3544-3565, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37306489

RESUMEN

Self-incompatibility (SI) is a widespread genetically determined system in flowering plants that prevents self-fertilization to promote gene flow and limit inbreeding. S-RNase-based SI is characterized by the arrest of pollen tube growth through the pistil. Arrested pollen tubes show disrupted polarized growth and swollen tips, but the underlying molecular mechanism is largely unknown. Here, we demonstrate that the swelling at the tips of incompatible pollen tubes in pear (Pyrus bretschneideri [Pbr]) is mediated by the SI-induced acetylation of the soluble inorganic pyrophosphatase (PPA) PbrPPA5. Acetylation at Lys-42 of PbrPPA5 by the acetyltransferase GCN5-related N-acetyltransferase 1 (GNAT1) drives accumulation of PbrPPA5 in the nucleus, where it binds to the transcription factor PbrbZIP77, forming a transcriptional repression complex that inhibits the expression of the pectin methylesterase (PME) gene PbrPME44. The function of PbrPPA5 as a transcriptional repressor does not require its PPA activity. Downregulating PbrPME44 resulted in increased levels of methyl-esterified pectins in growing pollen tubes, leading to swelling at their tips. These observations suggest a mechanism for PbrPPA5-driven swelling at the tips of pollen tubes during the SI response. The targets of PbrPPA5 include genes encoding cell wall-modifying enzymes, which are essential for building a continuous sustainable mechanical structure for pollen tube growth.


Asunto(s)
Tubo Polínico , Pyrus , Ribonucleasas/metabolismo , Pirofosfatasa Inorgánica/genética , Pirofosfatasa Inorgánica/metabolismo , Acetilación , Pyrus/metabolismo
2.
Plant Physiol ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38696652

RESUMEN

Pear ring rot, caused by Botryosphaeria dothidea, is the most serious disease of pear (Pyrus spp.) trees. However, the molecular mechanisms underlying pear resistance to B. dothidea remain elusive. Herein, we demonstrated that the pear AuTophagy-related Gene 1a (PbrATG1a) plays a key role in autophagic activity and resistance to B. dothidea. Stable overexpression of PbrATG1a enhanced resistance to B. dothidea in pear calli. Autophagy activity was greater in PbrATG1a overexpressing calli than in WT calli. We used yeast one-hybrid screening to identify a transcription factor, Related to ABI3 and VP1 (Pbr3RAV2), that binds the promoter of PbrATG1a and enhances pear resistance to B. dothidea by regulating autophagic activity. Specifically, overexpression of Pbr3RAV2 enhanced resistance to B. dothidea in pear calli, while transient silencing of Pbr3RAV2 resulted in compromised resistance to B. dothidea in Pyrus betulaefolia. In addition, we identified Transparent Testa Glabra 1 (PbrTTG1), which interacts with Pbr3RAV2. Pathogen infection enhanced the interaction between Pbr3RAV2 and PbrTTG1. The Pbr3RAV2-PbrTTG1 complex increased the binding capacity of Pbr3RAV2 and transcription of PbrATG1a. In addition to providing insights into the molecular mechanisms underlying pear disease resistance, these findings suggest potential genetic targets for enhancing disease resistance in pear.

3.
Plant J ; 113(3): 626-642, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36546867

RESUMEN

Stone cells are the brachysclereid cells in pear (Pyrus) fruit, consisting almost entirely of lignified secondary cell walls. They are distributed mainly near the fruit core and spread radially in the whole fruit. However, the development of stone cells has not been comprehensively characterized, and little is known about the regulation of stone cell formation at the transcriptomic, proteomic, and metabolomic levels. In the present study, we performed phenomic analysis on the stone cells and their associated vascular bundles distributed near the fruit cores. Transcriptomic, proteomic, and metabolomic analyses revealed a significant positive regulation of biological processes which contribute to the lignification and lignin deposition in stone cells near the fruit core, including sucrose metabolism and phenylalanine, tyrosine, tryptophan, and phenylalanine biosynthesis. We found many metabolites generated from the phenylpropanoid pathway contributing to the cell wall formation of stone cells near the fruit core. Furthermore, we identified a key transcription factor, PbbZIP48, which was highly expressed near the fruit core and was shown to regulate lignin biosynthesis in stone cells. In conclusion, the present study provides insight into the mechanism of lignified stone cell formation near the pear fruit core at multiple levels.


Asunto(s)
Frutas , Pyrus , Frutas/metabolismo , Pyrus/metabolismo , Lignina/metabolismo , Proteómica , Multiómica , Regulación de la Expresión Génica de las Plantas
4.
Plant J ; 113(3): 595-609, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36545801

RESUMEN

Gametophytic self-incompatibility (GSI) has been widely studied in flowering plants, but studies of the mechanisms underlying pollen tube growth arrest by self S-RNase in GSI species are limited. In the present study, two leucine-rich repeat extensin genes in pear (Pyrus bretschneideri), PbLRXA2.1 and PbLRXA2.2, were identified based on transcriptome and quantitative real-time PCR analyses. The expression levels of these two LRX genes were significantly higher in the pollen grains and pollen tubes of the self-compatible cultivar 'Jinzhui' (harboring a spontaneous bud mutation) than in those of the self-incompatible cultivar 'Yali'. Both PbLRXA2.1 and PbLRXA2.2 stimulated pollen tube growth and attenuated the inhibitory effects of self S-RNase on pollen tube growth by stabilizing the actin cytoskeleton and enhancing cell wall integrity. These results indicate that abnormal expression of PbLRXA2.1 and PbLRXA2.2 is involved in the loss of self-incompatibility in 'Jinzhui'. The PbLRXA2.1 and PbLRXA2.2 promoters were directly bound by the ABRE-binding factor PbABF.D.2. Knockdown of PbABF.D.2 decreased PbLRXA2.1 and PbLRXA2.2 expression and inhibited pollen tube growth. Notably, the expression of PbLRXA2.1, PbLRXA2.2, and PbABF.D.2 was repressed by self S-RNase, suggesting that self S-RNase can arrest pollen tube growth by restricting the PbABF.D.2-PbLRXA2.1/PbLRXA2.2 signal cascade. These results provide novel insight into pollen tube growth arrest by self S-RNase.


Asunto(s)
Pyrus , Ribonucleasas , Ribonucleasas/genética , Ribonucleasas/metabolismo , Tubo Polínico/metabolismo , Pyrus/genética , Pyrus/metabolismo , Polen/genética , Citoesqueleto de Actina/metabolismo
5.
Plant J ; 116(3): 903-920, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37549222

RESUMEN

Pear anthracnose caused by Colletotrichum fructicola is one of the main fungal diseases in all pear-producing areas. The degradation of ubiquitinated proteins by the 26S proteasome is a regulatory mechanism of eukaryotes. E3 ubiquitin ligase is substrate specific and is one of the most diversified and abundant enzymes in the regulation mechanism of plant ubiquitination. Although numerous studies in other plants have shown that the degradation of ubiquitinated proteins by the 26S proteasome is closely related to plant immunity, there are limited studies on them in pear trees. Here, we found that an E3 ubiquitin ligase, PbATL18, interacts with and ubiquitinates the transcription factor PbbZIP4, and this process is enhanced by C. fructicola infection. PbATL18 overexpression in pear callus enhanced resistance to C. fructicola infection, whereas PbbZIP4 overexpression increased sensitivity to C. fructicola infection. Silencing PbATL18 and PbbZIP4 in Pyrus betulaefolia seedlings resulted in opposite effects, with PbbZIP4 silencing enhancing resistance to C. fructicola infection and PbATL18 silencing increasing sensitivity to C. fructicola infection. Using yeast one-hybrid screens, an electrophoretic mobility shift assay, and dual-luciferase assays, we demonstrated that the transcription factor PbbZIP4 upregulated the expression of PbNPR3 by directly binding to its promoter. PbNPR3 is one of the key genes in the salicylic acid (SA) signal transduction pathway that can inhibit SA signal transduction. Here, we proposed a PbATL18-PbbZIP4-PbNPR3-SA model for plant response to C. fructicola infection. PbbZIP4 was ubiquitinated by PbATL18 and degraded by the 26S proteasome, which decreased the expression of PbNPR3 and promoted SA signal transduction, thereby enhancing plant C. fructicola resistance. Our study provides new insights into the molecular mechanism of pear response to C. fructicola infection, which can serve as a theoretical basis for breeding superior disease-resistant pear varieties.


Asunto(s)
Colletotrichum , Pyrus , Ubiquitina/metabolismo , Pyrus/genética , Pyrus/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Factores de Transcripción/genética , Proteínas Ubiquitinadas , Fitomejoramiento , Ubiquitina-Proteína Ligasas/metabolismo , Ácido Salicílico/metabolismo , Enfermedades de las Plantas/microbiología
6.
BMC Plant Biol ; 24(1): 444, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38778247

RESUMEN

BACKGROUND: The homodomain-leucine zipper (HD-Zip) is a conserved transcription factor family unique to plants that regulate multiple developmental processes including lignificaion. Stone cell content is a key determinant negatively affecting pear fruit quality, which causes a grainy texture of fruit flesh, because of the lignified cell walls. RESULTS: In this study, a comprehensive bioinformatics analysis of HD-Zip genes in Chinese white pear (Pyrus bretschneideri) (PbHBs) was performed. Genome-wide identification of the PbHB gene family revealed 67 genes encoding PbHB proteins, which could be divided into four subgroups (I, II, III, and IV). For some members, similar intron/exon structural patterns support close evolutionary relationships within the same subgroup. The functions of each subgroup of the PbHB family were predicted through comparative analysis with the HB genes in Arabidopsis and other plants. Cis-element analysis indicated that PbHB genes might be involved in plant hormone signalling and external environmental responses, such as light, stress, and temperature. Furthermore, RNA-sequencing data and quantitative real-time PCR (RT-qPCR) verification revealed the regulatory roles of PbHB genes in pear stone cell formation. Further, co-expression network analysis revealed that the eight PbHB genes could be classified into different clusters of co-expression with lignin-related genes. Besides, the biological function of PbHB24 in promoting stone cell formation has been demonstrated by overexpression in fruitlets. CONCLUSIONS: This study provided the comprehensive analysis of PbHBs and highlighted the importance of PbHB24 during stone cell development in pear fruits.


Asunto(s)
Frutas , Proteínas de Plantas , Pyrus , Factores de Transcripción , Pyrus/genética , Pyrus/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Frutas/genética , Frutas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Filogenia , Leucina Zippers/genética , Genes de Plantas , Familia de Multigenes , Pueblos del Este de Asia
7.
BMC Plant Biol ; 24(1): 481, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38816698

RESUMEN

BACKGROUND: LACS (long-chain acyl-CoA synthetase) genes are widespread in organisms and have multiple functions in plants, especially in lipid metabolism. However, the origin and evolutionary dynamics of the LACS gene family remain largely unknown. RESULTS: Here, we identified 1785 LACS genes in the genomes of 166 diverse plant species and identified the clades (I, II, III, IV, V, VI) of six clades for the LACS gene family of green plants through phylogenetic analysis. Based on the evolutionary history of plant lineages, we found differences in the origins of different clades, with Clade IV originating from chlorophytes and representing the origin of LACS genes in green plants. The structural characteristics of different clades indicate that clade IV is relatively independent, while the relationships between clades (I, II, III) and clades (V, VI) are closer. Dispersed duplication (DSD) and transposed duplication (TRD) are the main forces driving the evolution of plant LACS genes. Network clustering analysis further grouped all LACS genes into six main clusters, with genes within each cluster showing significant co-linearity. Ka/Ks results suggest that LACS family genes underwent purifying selection during evolution. We analyzed the phylogenetic relationships and characteristics of six clades of the LACS gene family to explain the origin, evolutionary history, and phylogenetic relationships of different clades and proposed a hypothetical evolutionary model for the LACS family of genes in plants. CONCLUSIONS: Our research provides genome-wide insights into the evolutionary history of the LACS gene family in green plants. These insights lay an important foundation for comprehensive functional characterization in future research.


Asunto(s)
Coenzima A Ligasas , Evolución Molecular , Familia de Multigenes , Filogenia , Plantas , Coenzima A Ligasas/genética , Plantas/genética , Plantas/clasificación , Proteínas de Plantas/genética , Genes de Plantas , Genoma de Planta , Duplicación de Gen
8.
BMC Genomics ; 24(1): 49, 2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36707756

RESUMEN

BACKGROUND: The circadian clock integrates endogenous and exogenous signals and regulates various physiological processes in plants. REVEILLE (RVE) proteins play critical roles in circadian clock system, especially CCA1 (CIRCADIAN CLOCK ASSOCIATED 1) and LHY (LATE ELONGATED HYPOCOTYL), which also participate in flowering regulation. However, little is known about the evolution and function of the RVE family in Rosaceae species, especially in Pyrus bretschneideri. RESULTS: In this study, we performed a genome-wide analysis and identified 51 RVE genes in seven Rosaceae species. The RVE family members were classified into two groups based on phylogenetic analysis. Dispersed duplication events and purifying selection were the main drivers of evolution in the RVE family. Moreover, the expression patterns of ten PbRVE genes were diverse in P. bretschneideri tissues. All PbRVE genes showed diurnal rhythms under light/dark cycles in P. bretschneideri leaves. Four PbRVE genes also displayed robust rhythms under constant light conditions. PbLHY, the gene with the highest homology to AtCCA1 and AtLHY in P. bretschneideri, is localized in the nucleus. Ectopic overexpression of PbLHY in Arabidopsis delayed flowering time and repressed the expression of flowering time-related genes. CONCLUSION: These results contribute to improving the understanding and functional research of RVE genes in P. bretschneideri.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Rosaceae , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Rosaceae/genética , Filogenia , Arabidopsis/metabolismo , Ritmo Circadiano/genética , Regulación de la Expresión Génica de las Plantas
9.
Planta ; 257(4): 68, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36853424

RESUMEN

MAIN CONCLUSION: The phylogenetic relationship and evolutionary history of the GAUT gene family were identified in 8 Rosaseae species. PbrGAUT22 was involved in controlling pollen tube growth by regulating the content of pectins. In plants, galacturonosyltransferases (GAUTs) were involved in homogalacturonan biosynthesis and functioned in maintaining pollen tube cell wall integrity. However, the feature and evolutionary history of the GAUT gene family in Rosaceae species and candidates in pear pollen tube growth remain unclear. Here, we identified 190 GAUT genes in 8 Rosaceae species, including Chinese white pear (Pyrus bretschneideri), European pear (Pyrus communis), apple (Malus × domestica), peach (Prunus persica), Japanese apricot (Prunus mume), sweet cherry (Prunus avium), woodland strawberry (Fragaria vesca) and black raspberry (Rubus occidentalis). Members in GAUT gene family were divided into 4 subfamilies according to the phylogenetic and structural analysis. Whole-genome duplication events and dispersed duplicates drove the expansion of the GAUT gene family. Among 23 pollen-expressed PbrGAUT genes in pear, PbrGAUT22 showed increased expression level during 1-6 h post-cultured pollen tubes. PbrGAUT22 was localized to the cytoplasm and plasma membrane. Knockdown of PbrGAUT22 expression in pollen tubes caused the decrease of pectin content and inhibited pear pollen tubes growth. Taken together, we investigated the identification and evolution of the GAUT gene family in Rosaceae species, and found that PbrGAUT22 played an essential role in the synthesis of pectin and the growth of pear pollen tubes.


Asunto(s)
Fragaria , Malus , Prunus persica , Pyrus , Rosaceae , Rosaceae/genética , Pyrus/genética , Tubo Polínico/genética , Filogenia , Proliferación Celular
10.
Physiol Plant ; 175(2): e13893, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36929905

RESUMEN

Photoperiod provides a key environmental signal that controls plant growth. Plants have evolved an integrated mechanism for sensing photoperiods with internal clocks to orchestrate physiological events. This mechanism has been identified to enable timely plant growth and improve fitness. Although the components and pathways underlying photoperiod regulation have been described in many species, diurnal patterns of gene expression at the genome-wide level under different photoperiods are rarely reported in perennial fruit trees. To explore the global gene expression in response to photoperiod, pear plants were cultured under long-day (LD) and short-day (SD) conditions. A time-series transcriptomic study was implemented using LD and SD samples collected at 4 h intervals over 2 days. We identified 13,677 rhythmic genes, of which 7639 were identified under LD and 10,557 under SD conditions. Additionally, 4674 genes were differentially expressed in response to photoperiod change. We also characterized the candidate homologs of clock-associated genes in pear. Clock genes were involved in the regulation of many processes throughout the day, including photosynthesis, stress response, hormone dynamics, and secondary metabolism. Strikingly, genes within photosynthesis-related pathways were enriched in both the rhythmic and differential expression analyses. Several key candidate genes were identified to be associated with regulating photosynthesis and improving productivity under different photoperiods. The results suggest that temporal variation in gene expression should not be ignored in pear gene function research. Overall, our work expands the understanding of photoperiod regulation of plant growth, particularly by extending the research to non-model trees.


Asunto(s)
Fotoperiodo , Pyrus , Transcriptoma , Regulación de la Expresión Génica de las Plantas , Perfilación de la Expresión Génica
11.
Sensors (Basel) ; 23(9)2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37177776

RESUMEN

The leaf phenotypic traits of plants have a significant impact on the efficiency of canopy photosynthesis. However, traditional methods such as destructive sampling will hinder the continuous monitoring of plant growth, while manual measurements in the field are both time-consuming and laborious. Nondestructive and accurate measurements of leaf phenotypic parameters can be achieved through the use of 3D canopy models and object segmentation techniques. This paper proposed an automatic branch-leaf segmentation pipeline based on lidar point cloud and conducted the automatic measurement of leaf inclination angle, length, width, and area, using pear canopy as an example. Firstly, a three-dimensional model using a lidar point cloud was established using SCENE software. Next, 305 pear tree branches were manually divided into branch points and leaf points, and 45 branch samples were selected as test data. Leaf points were further marked as 572 leaf instances on these test data. The PointNet++ model was used, with 260 point clouds as training input to carry out semantic segmentation of branches and leaves. Using the leaf point clouds in the test dataset as input, a single leaf instance was extracted by means of a mean shift clustering algorithm. Finally, based on the single leaf point cloud, the leaf inclination angle was calculated by plane fitting, while the leaf length, width, and area were calculated by midrib fitting and triangulation. The semantic segmentation model was tested on 45 branches, with a mean Precisionsem, mean Recallsem, mean F1-score, and mean Intersection over Union (IoU) of branches and leaves of 0.93, 0.94, 0.93, and 0.88, respectively. For single leaf extraction, the Precisionins, Recallins, and mean coverage (mCoV) were 0.89, 0.92, and 0.87, respectively. Using the proposed method, the estimated leaf inclination, length, width, and area of pear leaves showed a high correlation with manual measurements, with correlation coefficients of 0.94 (root mean squared error: 4.44°), 0.94 (root mean squared error: 0.43 cm), 0.91 (root mean squared error: 0.39 cm), and 0.93 (root mean squared error: 5.21 cm2), respectively. These results demonstrate that the method can automatically and accurately measure the phenotypic parameters of pear leaves. This has great significance for monitoring pear tree growth, simulating canopy photosynthesis, and optimizing orchard management.


Asunto(s)
Imagenología Tridimensional , Pyrus , Imagenología Tridimensional/métodos , Árboles , Plantas , Hojas de la Planta
12.
BMC Genomics ; 23(1): 233, 2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35337257

RESUMEN

Abscisic acid (ABA) is a phytohormone that plays important roles in the regulation of plant growth, seed germination, and stress responses. The pyrabactin resistance 1-like (PYR/PYL) protein, an ABA receptor, was involved in the initial step in ABA signal transduction. However, the evolutionary history and characteristics of PYL genes expression remain unclear in Chinese white pear (Pyrus bretschneideri) or other Rosaceae species. In this study, 67 PYL genes were identified in eight Rosaceae species, and have been classified into three subgroups based on specific motifs and phylogenetic analysis. Intriguingly, we observed that whole-genome duplication (WGD) and dispersed duplication (DSD) have a major contribution to PYL family expansion. Purifying selection was the major force in PYL genes evolution. Expression analysis finds that PYL genes may function in multiple pear tissues. qRT-PCR validation of 11 PbrPYL genes indicates their roles in seed germination and abiotic stress responses. Our study provides a basis for further elucidation of the function of PYL genes and analysis of their expansion, evolution and expression patterns, which helps to understand the molecular mechanism of pear response to seed germination and seedling abiotic stress.


Asunto(s)
Pyrus , Rosaceae , Regulación de la Expresión Génica de las Plantas , Germinación/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pyrus/genética , Rosaceae/genética , Semillas/genética , Semillas/metabolismo
13.
Genome Res ; 29(11): 1889-1899, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31649061

RESUMEN

Genome assemblies from diploid organisms create mosaic sequences alternating between parental alleles, which can create erroneous gene models and other problems. In animals, a popular strategy to generate haploid genome-resolved assemblies has been the sampling of (haploid) gametes, and the advent of single-cell sequencing has further advanced such methods. However, several challenges for the isolation and amplification of DNA from plant gametes have limited such approaches in plants. Here, we combined a new approach for pollen protoplast isolation with a single-cell DNA amplification technique and then used a "barcoding" bioinformatics strategy to incorporate haploid-specific sequence data from 12 pollen cells, ultimately enabling the efficient and accurate phasing of the pear genome into its A and B haploid genomes. Beyond revealing that 8.12% of the genes in the pear reference genome feature mosaic assemblies and enabling a previously impossible analysis of allelic affects in pear gene expression, our new haploid genome assemblies provide high-resolution information about recombination during meiosis in pollen. Considering that outcrossing pear is an angiosperm species featuring very high heterozygosity, our method for rapidly phasing genome assemblies is potentially applicable to several yet-unsequenced outcrossing angiosperm species in nature.


Asunto(s)
Diploidia , Genoma de Planta , Células Germinativas de las Plantas , Polen/citología , Biología Computacional , ADN de Plantas/genética , Haplotipos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Meiosis
14.
BMC Plant Biol ; 22(1): 310, 2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35754039

RESUMEN

BACKGROUND: Glucose can be involved in metabolic activities as a structural substance or signaling molecule and plays an important regulatory role in fruit development. Glucose metabolism is closely related to the phenylpropanoid pathway, but the specific role of glucose in regulating lignin biosynthesis in pear fruit is still unclear. The transcriptome of pear calli generated from fruit and treated with glucose was analyzed to investigate the role of glucose in lignin biosynthesis. RESULTS: The treatment of exogenous glucose significantly enhanced the accumulation of lignin in pear calli. A total of 6566 differentially expressed genes were obtained by transcriptome sequencing. Glycolysis was found to be the pathway with significant changes. Many differentially expressed genes were enriched in secondary metabolic pathways, especially the phenylpropanoid pathway. Expression of structural genes (PbPAL, PbHCT, PbCOMT, PbPRX) in lignin biosynthesis was up-regulated after glucose treatment. In addition, glucose might regulate lignin biosynthesis through interactions with ABA, GA, and SA signaling. Several candidate MYB transcription factors involved in glucose-induced lignin biosynthesis have also been revealed. The qRT-PCR analyses showed that the expression pattern of PbPFP at early developmental stage in 'Dangshansuli' fruits was consistent with the trend of lignin content. Transient expression of PbPFP resulted in a significant increase of lignin content in 'Dangshansuli' fruits at 35 days after full bloom (DAB) and tobacco leaves, indicating that PbPFP (Pbr015118.1) might be associated with the enhancement of lignin biosynthesis in response to glucose treatment. CONCLUSIONS: PbPFP plays a positive role in regulating lignin biosynthesis in response to glucose treatment. This study may reveal the regulatory pathway related to lignin accumulation in pear calli induced by glucose.


Asunto(s)
Pyrus , Frutas , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Glucosa/metabolismo , Glucosa/farmacología , Lignina , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma
15.
BMC Genomics ; 22(1): 831, 2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34789145

RESUMEN

BACKGROUND: The content of stone cells in pears has a great influence on taste. Stone cells are formed by the accumulation of lignin. The treatment of exogenous calcium can affect the lignin synthesis, but this Ca-mediated mechanism is still unclear. In this study, the author performed a comparative transcriptomic analysis of callus of pears (Pyrus x bretschneideri) treated with calcium nitrate Ca (NO3)2 to investigate the role of calcium in lignin synthesis. RESULTS: There were 2889 differentially expressed genes (DEGs) detected between the Control and Ca (NO3)2 treatment in total. Among these 2889 DEGs, not only a large number of genes related to Ca single were found, but also many genes were enriched in secondary metabolic pathway, especially in lignin synthesis. Most of them were up-regulated during the development of callus after Ca (NO3)2 treatment. In order to further explore how calcium nitrate treatment affects lignin synthesis, the author screened genes associated with transduction of calcium signal in DEGs, and finally found CAM, CML, CDPK, CBL and CIPK. Then the author identified the PbCML3 in pears and conducted relevant experiments finding the overexpression of PbCML3 would increase the content of pear stone cells, providing potential insights into how Ca treatment enhances the stone cell in pears. CONCLUSIONS: Our deep analysis reveals the effects of exogenous calcium on calcium signal and lignin biosynthesis pathway. The function of PbCML3 on stone cells formation was verified in pear.


Asunto(s)
Pyrus , Calcio , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Pyrus/genética , Transcriptoma
16.
Genomics ; 112(1): 712-720, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31078718

RESUMEN

DNA binding with One Finger (Dof) proteins are plant-specific transcription factors with highly conserved Dof domain, including C2-C2 type zinc finger motifs. In this study, we identified 45 PbDofs in pear (Pyrusbretschneideri). PbDofs were classified into eight subfamilies by phylogenetic analysis. Conserved motifs of PbDof proteins were analyzed by MEME. PbDofs in subfamily D1 werehomologous to CDFs in Arabidopsis. In this study, we showed that PbDof9.2 was regulated by both the circadian clock and photoperiod. PbDof9.2-GFP proteinwas localized in the nucleus. Overexpression of PbDof9.2 in Arabidopsis caused delayed flowering time. PbDof9.2 suppressed the flowering time regulator FT and could repress flowering time by promoting activity of PbTFL1a and PbTFL1b promoter. These results suggest that Doftranscription factors have conserved functions in plant development.


Asunto(s)
Flores , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Regiones Promotoras Genéticas , Pyrus , Factores de Transcripción , Arabidopsis/genética , Arabidopsis/metabolismo , Flores/genética , Flores/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Pyrus/genética , Pyrus/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Dedos de Zinc
17.
BMC Plant Biol ; 19(1): 190, 2019 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-31068146

RESUMEN

BACKGROUND: The functional characteristics of SLAC/SLAH family members isolated from Arabidopsis thaliana, poplar, barley and rice have been comprehensively investigated. However, there are no reports regarding SLAC/SLAH family genes from Rosaceae plants. RESULTS: In this study, the function of PbrSLAH3, which is predominately expressed in pear (Pyrus bretschneideri) root, was investigated. PbrSLAH3 can rescue the ammonium toxicity phenomenon of slah3 mutant plants under high-ammonium/low-nitrate conditions. In addition, yeast two-hybrid and bimolecular fluorescence complementation assays confirmed that PbrSLAH3 interacts with PbrCPK32. Moreover, when PbrSLAH3 was co-expressed with either the Arabidopsis calcium-dependent protein kinase (CPK) 21 or PbrCPK32 in Xenopus oocytes, yellow fluorescence was emitted from the oocytes and typical anion currents were recorded in the presence of extracellular NO3-. However, when PbrSLAH3 alone was injected, no yellow fluorescence or anion currents were recorded, suggesting that anion channel PbrSLAH3 activity was controlled through phosphorylation. Finally, electrophysiological and transgene results showed that PbrSLAH3 was more permeable to NO3- than Cl-. CONCLUSION: We suggest that PbrSLAH3 crossing-talk with PbrCPK32 probably participate in transporting of nitrate nutrition in pear root.


Asunto(s)
Canales Iónicos/metabolismo , Nitratos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Quinasas/metabolismo , Pyrus/enzimología , Compuestos de Amonio/toxicidad , Animales , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Fenómenos Electrofisiológicos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Mutación/genética , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Filogenia , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Pyrus/efectos de los fármacos , Pyrus/genética , Xenopus
18.
Planta ; 250(6): 1911-1925, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31523779

RESUMEN

MAIN CONCLUSION: PbrKAT1, which is inhibited by external Na+ in Xenopus laevis oocytes, is characterized as encoding a typical inward rectifying channel that is mainly expressed in guard cells. Potassium (K+) is the most abundant cation in plant cells necessary for plant growth and development. The uptake and transport of K+ are mainly completed through transporters and channels, and the Shaker family genes are the most studied K+ channels in plants. However, there is far less information about this family in Rosaceae species. We performed a genome-wide analysis and identified Shaker K+ channel gene family members in Rosaceae. We cloned and characterized a Shaker K+ channel KAT1 from pear (Pyrus × bretschneideri). In total, 36 Shaker K+ channel genes were identified from Rosaceae species and were classified into five subgroups based on structural characteristics and a phylogenetic analysis. Whole-genome and dispersed duplications were the primary forces underlying Shaker K+ channel gene family expansion in Rosaceae, and purifying selection played a key role in the evolution of Shaker K+ channel genes. ß-Glucuronidase and qRT-PCR assays revealed that PbrKAT1 was mainly expressed in leaves, especially in guard cells. PbrKAT1 displayed a typical inward-rectifying current when expressed in Xenopus laevis oocytes. The activity of PbrKAT1 was inhibited by external sodium ions, possibly playing an important role in the regulation of salt tolerance in pear. These results provide valuable information on evolution, expression and functions of the Shaker K+ channel gene family in plants.


Asunto(s)
Proteínas de Plantas/metabolismo , Pyrus/metabolismo , Rosaceae/metabolismo , Canales de Potasio de la Superfamilia Shaker/metabolismo , Animales , Animales Modificados Genéticamente , Arabidopsis/genética , Arabidopsis/metabolismo , Cromosomas de las Plantas/genética , Clonación Molecular , Evolución Molecular , Oocitos/metabolismo , Técnicas de Placa-Clamp , Filogenia , Proteínas de Plantas/fisiología , Reacción en Cadena de la Polimerasa , Pyrus/fisiología , Rosaceae/genética , Rosaceae/fisiología , Canales de Potasio de la Superfamilia Shaker/fisiología , Sintenía/genética , Xenopus laevis
19.
Plant J ; 92(3): 437-451, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28845529

RESUMEN

Red fruits are popular and widely accepted by consumers because of an enhanced appearance and enriched anthocyanins. The molecular mechanism of anthocyanin regulation in red-skinned pear (Pyrus) has been studied, and the genes encoding the biosynthetic steps and several transcription factors (TFs) have been characterized. In this study, a candidate R2R3 MYB TF, PyMYB114, was identified by linkage to the quantitative trait loci (QTL) for red skin color on linkage group 5 in a population of Chinese pear (Pyrus bretschneideri). The function of PyMYB114 was verified by transient transformation in tobacco (Nicotinana tabacum) leaves and strawberry (Fragaria) and pear fruits, resulting in the biosynthesis of anthocyanin. Suppression of PyMYB114 could inhibit anthocyanin biosynthesis in red-skinned pears. The ERF/AP2 TF PyERF3 was found to interact with PyMYB114 and its partner PybHLH3 to co-regulate anthocyanin biosynthesis, as shown by a dual luciferase reporter system and a yeast two-hybrid assay. In addition, the transcript abundance of PyMYB114 and PyMYB10 were correlated, and co-transformation of these two genes into tobacco and strawberry led to enhanced anthocyanin biosynthesis. This interaction network provides insight into the coloration of fruits and the interaction of different TFs to regulate anthocyanin biosynthesis.


Asunto(s)
Antocianinas/biosíntesis , Regulación de la Expresión Génica de las Plantas , Pyrus/genética , Factores de Transcripción/metabolismo , Mapeo Cromosómico , Fragaria/genética , Fragaria/fisiología , Frutas/genética , Frutas/fisiología , Expresión Génica , Pigmentación , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pyrus/fisiología , Sitios de Carácter Cuantitativo/genética , Nicotiana/genética , Nicotiana/fisiología , Factores de Transcripción/genética , Técnicas del Sistema de Dos Híbridos
20.
Genome ; 61(10): 755-765, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30130425

RESUMEN

The K+ transporter/high-affinity K+/K+ uptake (KT/HAK/KUP) family, as one of the largest K+ transporter families in higher plants, plays an essential role in plant growth, mineral element absorption, salt stress tolerance, and other physiological processes. However, little is known about this family in pear (Pyrus). Here, we identified 20 K+ transporter genes in pear (P. bretschneideri) using genome-wide analysis. Their gene structure, chromosomal distribution, conserved motifs, phylogenetics, duplication events, and expression patterns were also examined. The results of phylogenetic analysis showed that PbrKT/HAK/KUP genes were clustered into three major groups (Groups I-III). Among the 20 PbrKT/HAK/KUP genes, 18 were mapped to nine chromosomes and two to scaffolds. Four WGD/segmental gene pairs were identified, indicating that WGD/segmental duplication may have contributed to the expansion of the KT/HAK/KUP family in pear. Among the four pairs of WGD/segmentally duplicated genes, both members of three pairs had been subjected to purifying selection, whereas the fourth pair had been subjected to positive selection. Furthermore, phenotypic experiments showed that the growth of pear seedlings was affected by potassium deficiency treatment. Expression patterns of 20 PbrKT/HAK/KUP genes in roots were further assayed with qRT-PCR. PbrHAK1 and PbrHAK12/16 were significantly expressed in response to K+ deficiency, suggesting that these genes are crucial for K+ uptake in pear, especially under the condition of K+ starvation. Our results provide a foundation for further study on the function of KT/HAK/KUP genes in pear.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Canales de Potasio/genética , Canales de Potasio/metabolismo , Pyrus/metabolismo , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Evolución Molecular , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pyrus/genética , Pyrus/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA