Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Angew Chem Int Ed Engl ; 63(13): e202315034, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38352980

RESUMEN

The efficient conversion and storage of solar energy for chemical fuel production presents a challenge in sustainable energy technologies. Metal nitrides (MNs) possess unique structures that make them multi-functional catalysts for water splitting. However, the thermodynamic instability of MNs often results in the formation of surface oxide layers and ambiguous reaction mechanisms. Herein, we present on the photo-induced reconstruction of a Mo-rich@Co-rich bi-layer on ternary cobalt-molybdenum nitride (Co3 Mo3 N) surfaces, resulting in improved effectiveness for solar water splitting. During a photo-oxidation process, the uniform initial surface oxide layer is reconstructed into an amorphous Co-rich oxide surface layer and a subsurface Mo-N layer. The Co-rich outer layer provides active sites for photocatalytic oxygen evolution reaction (POER), while the Mo-rich sublayer promotes charge transfer and enhances the oxidation resistance of Co3 Mo3 N. Additionally, the surface reconstruction yields a shortened Co-Mo bond length, weakening the adsorption of hydrogen and resulting in improved performance for both photocatalytic hydrogen evolution reaction (PHER) and POER. This work provides insight into the surface structure-to-activity relationships of MNs in solar energy conversion, and is expected to have significant implications for the design of metal nitride-based catalysts in sustainable energy technologies.

2.
Acta Pharmacol Sin ; 44(5): 1083-1094, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36411339

RESUMEN

Although several KRasG12C inhibitors have displayed promising efficacy in clinical settings, acquired resistance developed rapidly and circumvented the activity of KRasG12C inhibitors. To explore the mechanism rendering acquired resistance to KRasG12C inhibitors, we established a series of KRASG12C-mutant cells with acquired resistance to AMG510. We found that differential activation of receptor tyrosine kinases (RTKs) especially EGFR or IGF1R rendered resistance to AMG510 in different cellular contexts by maintaining the activation of MAPK and PI3K signaling. Simultaneous inhibition of EGFR and IGF1R restored sensitivity to AMG510 in resistant cells. PI3K integrates signals from multiple RTKs and the level of phosphorylated AKT was revealed to negatively correlate with the anti-proliferative activity of AMG510 in KRASG12C-mutant cells. Concurrently treatment of a novel PI3Kα inhibitor CYH33 with AMG510 exhibited a synergistic effect against parental and resistant KRASG12C-mutant cells in vitro and in vivo, which was accompanied with concomitant inhibition of AKT and MAPK signaling. Taken together, these findings revealed the potential mechanism rendering acquired resistance to KRasG12C inhibitors and provided a mechanistic rationale to combine PI3Kα inhibitors with KRasG12C inhibitors for therapy of KRASG12C-mutant cancers in future clinical trials.


Asunto(s)
Resistencia a Antineoplásicos , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas p21(ras) , Receptores ErbB/efectos de los fármacos , Receptores ErbB/metabolismo , Mutación , Fosfatidilinositol 3-Quinasas/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/genética , Inhibidores de Puntos de Control Inmunológico/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética
3.
Angew Chem Int Ed Engl ; 62(5): e202213927, 2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36316280

RESUMEN

As a consequence of rapid industrialization throughout the world, various environmental pollutants have begun to accumulate in water, air, and soil. This endangers the ecological environment of the earth, and environmental remediation has become an immediate priority. Among various environmental remediation techniques, piezocatalytic techniques, which uniquely take advantage of the piezoelectric effect, have attracted much attention. Piezoelectric effects allow pollutant degradation directly, while also enhancing photocatalysis by reducing the recombination of photogenerated carriers. In this Review, we provide a comprehensive summary of recent developments in piezocatalytic techniques for environmental remediation. The origin of the piezoelectric effect as well as classification of piezoelectric materials and their application in environmental remediation are systematically summarized. We also analyze the potential underlying mechanisms. Finally, urgent problems and the future development of piezocatalytic techniques are discussed.

4.
Planta ; 244(2): 405-16, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27084678

RESUMEN

MAIN CONCLUSION: A new wheat-rye 1BL•1RS translocation line, with the characteristics of superior stripe rust resistance and high thousand-kernel weight and grain number per spike, was developed and identified from progenies of wheat-rye- Psathyrostachys huashanica trigeneric hybrids. The wheat-rye 1BL•1RS translocation line from Petkus rye has contributed substantially to the world wheat production. However, due to extensive growing of cultivars with disease resistance genes from short arm of rye chromosome 1R and coevolution of pathogen virulence and host resistance, these cultivars successively lost resistance to pathogens. In this study, a new wheat-rye line K13-868, derived from the progenies of wheat-rye-Psathyrostachys huashanica trigeneric hybrids, was identified and analyzed using fluorescence in situ hybridization (FISH), genomic in situ hybridization (GISH), acid polyacrylamide gel electrophoresis (A-PAGE), and molecular markers. Cytological studies indicated that the mean chromosome configuration of K13-868 at meiosis was 2n = 42 = 0.14 I + 18.78 II (ring) + 2.15 II (rod). Sequential FISH and GISH results demonstrated that K13-868 was a compensating wheat-rye 1BL•1RS Robertsonian translocation line. Acid PAGE analysis revealed that clear specific bands of rye 1RS were expressed in K13-868. Simple sequence repeat (SSR) and rye 1RS-specific markers ω-sec-p1/ω-sec-p2 and O-SEC5'-A/O-SEC3'-R suggested that the 1BS arm of wheat had been substituted by the 1RS arm of rye. At the seedling and adult growth stage, compared with its recurrent wheat parent SM51 and six other wheat cultivars containing the 1RS arm in southwestern China, K13-868 showed high levels of resistance to stripe rust (Puccinia striiformis f. sp. tritici, Pst) pathogens prevalent in China, which are virulent to Yr10 and Yr24/Yr26. In addition, K13-868 expresses higher thousand-kernel weight and more grain number per spike than these controls in two growing seasons, suggesting that this line may carry yield-related genes of rye. This translocation line, with significant characteristics of resistance to stripe rust and high thousand-kernel weight and grain number per spike, could be utilized as a valuable germplasm for wheat improvement.


Asunto(s)
Resistencia a la Enfermedad/genética , Hibridación Genética , Secale/genética , Translocación Genética , Triticum/genética , Marcadores Genéticos , Hibridación Fluorescente in Situ , Meiosis , Enfermedades de las Plantas/microbiología , Secale/crecimiento & desarrollo , Secale/microbiología , Triticum/crecimiento & desarrollo , Triticum/microbiología
5.
Genome ; 59(4): 221-9, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26961208

RESUMEN

Psathyrostachys huashanica Keng (2n = 2x = 14, NsNs), a distant wild relative of common wheat, possesses rich potentially valuable traits, such as disease resistance and more spikelets and kernels per spike, that could be useful for wheat genetic improvement. Development of wheat - P. huashanica translocation lines will facilitate its practical utilization in wheat breeding. In the present study, a wheat - P. huashanica small segmental translocation line, K-13-835-3, was isolated and characterized from the BC1F5 population of a cross between wheat - P. huashanica amphiploid PHW-SA and wheat cultivar CN16. Cytological studies showed that the mean chromosome configuration of K-13-835-3 at meiosis was 2n = 42 = 0.10 I + 19.43 II (ring) + 1.52 II (rod). GISH analyses indicated that chromosome composition of K-13-835-3 included 40 wheat chromosomes and a pair of wheat - P. huashanica translocation chromosomes. FISH results demonstrated that the small segment from an unidentified P. huashanica chromosome was translocated into wheat chromosome arm 5DS, proximal to the centromere region of 5DS. Compared with the cultivar wheat parent CN16, K-13-835-3 was highly resistant to stripe rust pathogens prevalent in China. Furthermore, spikelets and kernels per spike in K-13-835-3 were significantly higher than those of CN16 in two growing seasons. These results suggest that the desirable genes from P. huashanica were successfully transferred into CN16 background. This translocation line could be used as novel germplasm for high-yield and, eventually, resistant cultivar breeding.


Asunto(s)
Resistencia a la Enfermedad/genética , Hibridación Genética , Enfermedades de las Plantas/genética , Poaceae/genética , Triticum/genética , Basidiomycota , Cromosomas de las Plantas , Fenotipo , Fitomejoramiento , Enfermedades de las Plantas/microbiología , Poaceae/microbiología , Translocación Genética , Triticum/microbiología
6.
Genes Dis ; 10(2): 403-414, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37223497

RESUMEN

KRAS is one of the most commonly mutated oncogenes in cancers and therapeutics directly targeting the KRas have been challenging. Among the different known mutants, KRasG12C has been proved to be successfully targeted recently. Several covalent inhibitors selectively targeting KRasG12C have shown promising efficacy against cancers harboring KRASG12C mutation in clinical trials and AMG510 (sotorasib) has been approved for the treatment of KRASG12C-mutated locally advanced or metastatic non-small cell lung cancer. However, the overall responsive rate of KRasG12C inhibitors was around 50% in patients with non-small cell lung cancer and the efficacy in patients with colorectal cancer or appendiceal cancer appears to be less desirable. It is of great importance to discover biomarkers to distinguish patients who are likely benefitted. Moreover, adaptive resistance would occur inevitably with the persistent administration like other molecularly targeted therapies. Several combinatorial regimens have been studied in an effort to potentiate the efficacy of KRasG12C inhibitors in preclinical settings. This review summarized the recent progress of covalent KRasG12C inhibitors with a focus on identifying biomarkers to predict or monitor the efficacy and proposing rational drug combinations based on elucidation of the mechanisms of drug resistance.

7.
ACS Appl Mater Interfaces ; 13(6): 7238-7247, 2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33539705

RESUMEN

Metal-support interaction strongly influences the catalytic properties of metal-based catalysts. Here, titanium nitride (TiN) nanospheres are shown to be an outstanding support, for tuning the electronic property of platinum (Pt) nanoparticles and adjusting the morphology of indium sulfide (In2S3) active components, forming flower-like core-shell nanostructures (TiN-Pt@In2S3). The strong metal-support interaction between Pt and TiN through the formation of Pt-Ti bonds favors the migration of charge carriers and leads to the easy reducibility of TiN-Pt, thus improving the photocatalytic atom efficiency of Pt. The TiN-Pt@In2S3 composite shows reduction of Pt loading by 70% compared to the optimal Pt-based system. In addition, the optimal TiN-Pt@In2S3 composite exhibits a H2 evolution rate 4 times that of a Pt reference. This increase outperforms all other supports reported thus far.

8.
Front Genet ; 12: 753624, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35126448

RESUMEN

Winter Brassica rapa (B. rapa) is an important oilseed crop in northern China, but the mechanism of its cold resistance remains unclear. Ascorbate peroxidase (APX) plays important roles in the response of this plant to abiotic stress and in scavenging free radicals. In this study, the roles of APX proteins in the cold response and superoxide metabolism pathways in rapeseed species were investigated, and a comprehensive analysis of phylogeny, chromosome distribution, motif identification, sequence structure, gene duplication, and RNA-seq expression profiles in the APX gene family was conducted. Most BrAPX genes were specifically expressed under cold stress and behaved significantly differently in cold-tolerant and weakly cold-resistant varieties. Quantitative real-time-PCR (qRT-PCR) was also used to verify the differences in expression between these two varieties under cold, freezing, drought and heat stress. The expression of five BrAPX genes was significantly upregulated in growth cones at 3 h of cold stress, while their expression was significantly lower at 24 h than at 3 h. The expression of Bra015403 and Bra003918 was significantly higher in "Longyou-7" growth cones than in other treatments. Five BrAPXs (Bra035235, Bra003918, Bra033040, Bra017120, and Bra031934) were closely associated with abiotic stress responses in B. rapa. These candidate genes may play important roles in the response of B. rapa to low temperature stress and provide new information for the elucidation of the cold resistance mechanism in B. rapa.

9.
Sci Total Environ ; 728: 138904, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32570329

RESUMEN

Cadmium (Cd) contamination of soil becomes a potential agricultural and global environmental problem due to the need to ensure safe food. In this study, earthworms (Eisenia fetida) and plants (vetiver grass) were prepared for removal Cd from soil. The results showed the Cd concentration in the soil of all experimental groups decreased, notably by 17.60% in the group with 20 mg/kg Cd concentration. In the roots of vetiver, the content of Cd increased by 57% after earthworms were added and the transfer coefficient of Cd was also significantly increased. Moreover, Cd in the soil was generally absorbed by the intestinal tract of earthworms and became concentrated, mainly in the midgut and hindgut accounting for >77.78% of the total. In addition, enteric microorganism analysis demonstrated that the bacterial community structure played an important role in Cd enrichment and metabolism regulation. There was a significant correlation between some bacteria and Cd concentration. Among these bacteria, Pseudomonas brenneri, were involved in the adsorption and metabolism of Cd to reduce the toxicity of Cd to the earthworms. On the other hand, in order to cope with the external Cd stress, the malondialdehyde (MDA) and hydrogen critically (CAT) enzymes in the earthworms increased with the concentration. Therefore, the high tolerance of earthworms to Cd is related to its physiological adjustment and the balance of intestinal bacteria. The combination of earthworms, microorganisms and plants can result a good alternative to diminish the impact of Cd in soils.


Asunto(s)
Oligoquetos , Contaminantes del Suelo/análisis , Animales , Cadmio/análisis , Pseudomonas , Suelo
10.
Dalton Trans ; 49(15): 4887-4895, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32227002

RESUMEN

To enable high-efficiency solar energy conversion, rational design and preparation of low cost and stable semiconductor photocatalysts with associated co-catalysts are desirable. However preparation of efficient catalytic systems remains a challenge. Here, N-doped TiO2/ternary nickel-zinc nitride (N-TiO2-Ni3ZnN) nanocomposites have been shown to be a multi-functional catalyst for photocatalytic reactions. The particle size of Ni3ZnN can be readily tuned using N-TiO2 nanospheres as the active support. Due to its high conductivity and Pt-like properties, Ni3ZnN promotes charge separation and transfer, as well as reaction kinetics. The material shows co-catalytic performance relevant for multiple reactions, demonstrating its multifunctionality. Density functional theory (DFT) based calculations confirm the intrinsic metallic properties of Ni3ZnN. N-TiO2-Ni3ZnN exhibits evidently improved photocatalytic performances as compared to N-TiO2 under visible light irradiation.

11.
PLoS One ; 15(9): e0236577, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32941459

RESUMEN

Winter rapeseed (Brassica rapa L.) is the main oilseed crop in northern China and can safely overwinter at 35 (i.e., Tianshui, China) to 48 degrees north latitude (i.e., Altai, Heilongjiang, Raohe, and Xinjiang, China). In order to identify stable reference genes to understand the molecular mechanisms of stress tolerance in winter rapeseed, internal reference genes of winter rapeseed under four abiotic stresses were analyzed using GeNorm, NormFinder, BestKeeper, and RefFinder software. The most stable combinations of internal reference genes were ß-actin and SAND in cold-stressed leaves, ß-actin and EF1a in cold-stressed roots, F-box and SAND in high temperature-stressed leaves, and PP2A and RPL in high temperature-stressed roots, SAND and PP2A in NaCl-stressed leaves, RPL and UBC in NaCl-stressed roots, RPL and PP2A in PEG-stressed leaves, and PP2A and RPL in PEG-stressed roots. Expression profiles of PXG3 were used to verify these results. The stable reference genes identified in this study are useful tools for identifying stress-responsive genes to understand the molecular mechanisms of stress tolerance in winter rapeseed.


Asunto(s)
Brassica rapa/genética , Respuesta al Choque por Frío , Perfilación de la Expresión Génica/normas , Presión Osmótica , Proteínas de Plantas/genética , Brassica rapa/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Estándares de Referencia , Estaciones del Año
12.
Front Plant Sci ; 11: 1241, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32903421

RESUMEN

Cold damage has negatively impacted the yield, growth and quality of the edible cooking oil in Northern China and Brassica napus L.(rapeseed) planting areas decreased because of cold damage. In the present study we analyzed two Brassica napus cultivars of 16NTS309 (highly resistant to cold damage) and Tianyou2238 (cold sensitive) from Gansu Province, China using physiological, biochemical and cytological methods to investigate the plant's response to cold stress. The results showed that cold stress caused seedling dehydration, and the contents of malondialdehyde (MDA), relative electrolyte leakage and O2 - and H2O2 were increased in Tianyou2238 than 16NTS309 under cold stress at 4°C for 48 h, as well as the proline, soluble protein and soluble sugars markedly accumulated, and antioxidant enzymes of peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) were higher in 16NTS309 compared with in Tianyou2238, which play key roles in prevention of cell damage. After exposure to cold stress, the accumulation of the blue formazan precipitate and reddish brown precipitate indicated that O2 - and H2O2, respectively, were produced in the root, stem, and leaf were higher than under non-cold conditions. Contents of O2 - and H2O2 in cultivar Tianyou2238 were higher than 16NTS309, this is consistent with the phenotypic result. To understand the specific distribution of O2 - in the sub-cellular, we found that in both cultivars O2 - signals were distributed mainly in cambium tissue, meristematic cells, mesophyll cytoplasm, and surrounding the cell walls of root, stem, leaves, and leaf vein by morphoanatomical analysis, but the quantities varied. Cold stress also triggered obvious ultrastructural alterations in leaf mesophyll of Tianyou2238 including the damage of membrane system, destruction of chloroplast and swelling of mitochondria. This study are useful to provide new insights about the physiological and biochemical mechanisms and cytology associated with the response of B. napus to cold stress for use in breeding cold-resistant varieties.

13.
PeerJ ; 7: e6442, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30809446

RESUMEN

Garlic is used as a medicinal seasoning worldwide. The aim of this work was to compare four varieties of garlic: 'Taicangbaipi', 'Ershuizao', 'Hongqixing', and 'Single-clove'; among them, 'Ershuizao' and 'Hongqixing' are unique to the Sichuan Province of China. Firstly, soluble sugar, starch, and the protein content of the garlic were analysed. There was more soluble sugar in 'Single-clove', total starch in 'Hongqixing', and protein content in 'Ershuizao' relative to the other three varieties, respectively. Gas chromatography-mass spectrometry analysis showed that 'Ershuizao' and 'Hongqixing' contained high levels of 5-hydroxymethylfurfural, which has antitumor, antioxidant, and cytoprotective effects. Indeed, the extracts from these two types of garlic were more effective at inhibiting tumour growth than that from the others. Moreover, the sulphide content and antimicrobial effects of 'Ershuizao' and 'Hongqixing' garlic were also higher than those of the other two types of garlic. In addition, changes observed in the membrane permeability and protein leakage suggest that the antimicrobial activity of the 'Ershuizao' and 'Hongqixing' extracts may be due to the destruction of the structural integrity of the cell membranes, leading to cell death.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA