Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 782
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Hepatol ; 80(5): 778-791, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38237865

RESUMEN

BACKGROUND & AIMS: Endoplasmic reticulum (ER) stress of hepatocytes plays a causative role in non-alcoholic fatty liver disease (NAFLD). Reduced expression of hepatic nuclear factor 4α (HNF4α) is a critical event in the pathogenesis of NAFLD and other liver diseases. Whether ER stress regulates HNF4α expression remains unknown. The aim of this study was to delineate the machinery of HNF4α protein degradation and explore a therapeutic strategy based on protecting HNF4α stability during NAFLD progression. METHODS: Correlation of HNF4α and tribbles homologue 3 (TRIB3), an ER stress sensor, was evaluated in human and mouse NAFLD tissues. RNA-sequencing, mass spectrometry analysis, co-immunoprecipitation, in vivo and in vitro ubiquitination assays were used to elucidate the mechanisms of TRIB3-mediated HNF4α degradation. Molecular docking and co-immunoprecipitation analyses were performed to identify a cell-penetrating peptide that ablates the TRIB3-HNF4α interaction. RESULTS: TRIB3 directly interacts with HNF4α and mediates ER stress-induced HNF4α degradation. TRIB3 recruits tripartite motif containing 8 (TRIM8) to form an E3 ligase complex that catalyzes K48-linked polyubiquitination of HNF4α on lysine 470. Abrogating the degradation of HNF4α attenuated the effect of TRIB3 on a diet-induced NAFLD model. Moreover, the TRIB3 gain-of-function variant p.Q84R is associated with NAFLD progression in patients, and induces lower HNF4α levels and more severe hepatic steatosis in mice. Importantly, disrupting the TRIB3-HNF4α interaction using a cell-penetrating peptide restores HNF4α levels and ameliorates NAFLD progression in mice. CONCLUSIONS: Our findings unravel the machinery of HNF4α protein degradation and indicate that targeting TRIB3-TRIM8 E3 complex-mediated HNF4α polyubiquitination may be an ideal strategy for NAFLD therapy. IMPACT AND IMPLICATIONS: Reduced expression of hepatic nuclear factor 4α (HNF4α) is a critical event in the pathogenesis of NAFLD and other liver diseases. However, the mechanism of HNF4α protein degradation remains unknown. Herein, we reveal that TRIB3-TRIM8 E3 ligase complex is responsible for HNF4α degradation during NAFLD. Inhibiting the TRIB3-HNF4α interaction effectively stabilized HNF4α protein levels and transcription factor activity in the liver and ameliorated TRIB3-mediated NAFLD progression. Our findings demonstrate that disturbing the TRIM8-TRIB3-HNF4α interaction may provide a novel approach to treat NAFLD and even other liver diseases by stabilizing the HNF4α protein.


Asunto(s)
Péptidos de Penetración Celular , Enfermedad del Hígado Graso no Alcohólico , Proteínas Serina-Treonina Quinasas , Animales , Humanos , Ratones , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Péptidos de Penetración Celular/metabolismo , Hígado/patología , Simulación del Acoplamiento Molecular , Proteínas del Tejido Nervioso , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Represoras , Ubiquitina-Proteína Ligasas/metabolismo
2.
J Transl Med ; 22(1): 394, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38685033

RESUMEN

The immune system in humans is a defense department against both exogenous and endogenous hazards, where CD8+ T cells play a crucial role in opposing pathological threats. Various immunotherapies based on CD8+ T cells have emerged in recent decades, showing their promising results in treating intractable diseases. However, in the fight against the constantly changing and evolving cancers, the formation and function of CD8+ T cells can be challenged by tumors that might train a group of accomplices to resist the T cell killing. As cancer therapy stepped into the era of immunotherapy, understanding the physiological role of CD8+ T cells, studying the machinery of tumor immune escape, and thereby formulating different therapeutic strategies become the imperative missions for clinical and translational researchers to fulfill. After brief basics of CD8+ T cell-based biology is covered, this review delineates the mechanisms of tumor immune escape and discusses different cancer immunotherapy regimens with their own advantages and setbacks, embracing challenges and perspectives in near future.


Asunto(s)
Linfocitos T CD8-positivos , Inmunoterapia , Neoplasias , Humanos , Neoplasias/inmunología , Neoplasias/terapia , Inmunoterapia/métodos , Linfocitos T CD8-positivos/inmunología , Animales , Escape del Tumor/inmunología
3.
Am J Pathol ; 193(10): 1415-1426, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36906265

RESUMEN

Sequestosome 1 (SQSTM1/p62; hereafter p62) is an autophagy receptor protein for selective autophagy primarily due to its direct interaction with the microtubule light chain 3 protein that specifically localizes on autophagosome membranes. As a result, impaired autophagy leads to the accumulation of p62. p62 is also a common component of many human liver disease-related cellular inclusion bodies, such as Mallory-Denk bodies, intracytoplasmic hyaline bodies, α1-antitrypsin aggregates, as well as p62 bodies and condensates. p62 also acts as an intracellular signaling hub, and it involves multiple signaling pathways, including nuclear factor erythroid 2-related factor 2, NF-κB, and the mechanistic target of rapamycin, which are critical for oxidative stress, inflammation, cell survival, metabolism, and liver tumorigenesis. This review discusses the recent insights of p62 in protein quality control, including the role of p62 in the formation and degradation of p62 stress granules and protein aggregates as well as regulation of multiple signaling pathways in the pathogenesis of alcohol-associated liver disease.


Asunto(s)
Hepatopatías Alcohólicas , Neoplasias Hepáticas , Humanos , Proteína Sequestosoma-1/metabolismo , Transducción de Señal , Neoplasias Hepáticas/patología , FN-kappa B/metabolismo , Autofagia/fisiología
4.
Hepatology ; 78(2): 503-517, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-36999531

RESUMEN

BACKGROUND AND AIMS: The aim of the study was to investigate the role and mechanisms of tuberous sclerosis complex 1 (TSC1) and mechanistic target of rapamycin complex 1 (mTORC1) in alcohol-associated liver disease. APPROACH AND RESULTS: Liver-specific Tsc1 knockout (L- Tsc1 KO) mice and their matched wild-type mice were subjected to Gao-binge alcohol. Human alcoholic hepatitis (AH) samples were also used for immunohistochemistry staining, western blot, and quantitative real-time PCR (q-PCR) analysis. Human AH and Gao-binge alcohol-fed mice had decreased hepatic TSC1 and increased mTORC1 activation. Gao-binge alcohol markedly increased liver/body weight ratio and serum alanine aminotransferase levels in L- Tsc1 KO mice compared with Gao-binge alcohol-fed wild-type mice. Results from immunohistochemistry staining, western blot, and q-PCR analysis revealed that human AH and Gao-binge alcohol-fed L- Tsc1 KO mouse livers had significantly increased hepatic progenitor cells, macrophages, and neutrophils but decreased HNF4α-positive cells. Gao-binge alcohol-fed L- Tsc1 KO mice also developed severe inflammation and liver fibrosis. Deleting Tsc1 in cholangiocytes but not in hepatocytes promoted cholangiocyte proliferation and aggravated alcohol-induced ductular reactions, fibrosis, inflammation, and liver injury. Pharmacological inhibition of mTORC1 partially reversed hepatomegaly, ductular reaction, fibrosis, inflammatory cell infiltration, and liver injury in alcohol-fed L- Tsc1 KO mice. CONCLUSIONS: Our findings indicate that persistent activation of mTORC1 due to the loss of cholangiocyte TSC1 promotes liver cell repopulation, ductular reaction, inflammation, fibrosis, and liver injury in Gao-binge alcohol-fed L- Tsc1 KO mice, which phenocopy the pathogenesis of human AH.


Asunto(s)
Hepatitis Alcohólica , Hepatopatías Alcohólicas , Diana Mecanicista del Complejo 1 de la Rapamicina , Proteína 1 del Complejo de la Esclerosis Tuberosa , Animales , Humanos , Ratones , Etanol , Fibrosis , Hepatitis Alcohólica/patología , Inflamación/patología , Hígado/patología , Hepatopatías Alcohólicas/patología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones Noqueados , Proteína 1 del Complejo de la Esclerosis Tuberosa/metabolismo
5.
Chemistry ; : e202401815, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38925594

RESUMEN

The first aerobic protocol of direct transformation of p-methoxybenzyl (PMB) ethers to carboxylic acids efficiently with Fe(NO3)3•9H2O and TEMPO as catalysts at room temperature has been developed. The reaction accommodates C-Br bond, terminal/non-terminal C-C triple bond, amide, cyano, nitro, ester, and trifluoromethyl groups, etc. Even highly selective oxidative deprotection of different benzylic PMB ethers has been realized. The reaction has been successfully applied to the total synthesis of natural product, (R)-6-hydroxy-7,9-octadecadiynoic acid, demonstrating the practicality of the method. Based on experimental studies, a possible mechanism involving oxygen-stabilized benzylic cation has been proposed.

6.
J Clin Psychopharmacol ; 44(2): 117-123, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38230861

RESUMEN

BACKGROUND: As clinical practices with lithium salts for patients diagnosed with bipolar disorder (BD) are poorly documented in Asia, we studied the prevalence and clinical correlates of lithium use there to support international comparisons. METHODS: We conducted a cross-sectional study of use and dosing of lithium salts for BD patients across 13 Asian sites and evaluated bivariate relationships of lithium treatment with clinical correlates followed by multivariate logistic regression modeling. RESULTS: In a total of 2139 BD participants (52.3% women) of mean age 42.4 years, lithium salts were prescribed in 27.3% of cases overall, varying among regions from 3.20% to 59.5%. Associated with lithium treatment were male sex, presence of euthymia or mild depression, and a history of seasonal mood change. Other mood stabilizers usually were given with lithium, often at relatively high doses. Lithium use was associated with newly emerging and dose-dependent risk of tremors as well as risk of hypothyroidism. We found no significant differences in rates of clinical remission or of suicidal behavior if treatment included lithium or not. CONCLUSIONS: Study findings clarify current prevalence, dosing, and clinical correlates of lithium treatment for BD in Asia. This information should support clinical decision-making regarding treatment of BD patients and international comparisons of therapeutic practices.


Asunto(s)
Trastorno Bipolar , Humanos , Masculino , Femenino , Adulto , Trastorno Bipolar/tratamiento farmacológico , Trastorno Bipolar/epidemiología , Trastorno Bipolar/inducido químicamente , Litio/uso terapéutico , Estudios Transversales , Farmacoepidemiología , Sales (Química)/uso terapéutico , Antimaníacos/uso terapéutico , Compuestos de Litio/uso terapéutico
7.
J Org Chem ; 89(4): 2741-2747, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38299344

RESUMEN

Acyl radicals have been generated from the decarboxylation of α-oxocarboxylic acids by using a readily accessible organic pyrimidopteridine photoredox catalyst under ultraviolet-A (UV-A) light irradiation. These reactive acyl radicals were smoothly added to olefins such as styrenes and diverse Michael acceptors, with the assistance of H2O/D2O as hydrogen donors, enabling easy access to a diverse range of ketones/ß-deuterio ketones. A wide range of α-oxocarboxylic acids are compatible with this reaction, which shows a reliable, atom-economical, and eco-friendly protocol. Furthermore, postsynthetic diversifications and applications are presented.

8.
Physiol Plant ; 176(2): e14296, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38650503

RESUMEN

In Dunaliella tertiolecta, a microalga renowned for its extraordinary tolerance to high salinity levels up to 4.5 M NaCl, the mechanisms underlying its stress response have largely remained a mystery. In a groundbreaking discovery, this study identifies a choline dehydrogenase enzyme, termed DtCHDH, capable of converting choline to betaine aldehyde. Remarkably, this is the first identification of such an enzyme not just in D. tertiolecta but across the entire Chlorophyta. A 3D model of DtCHDH was constructed, and molecular docking with choline was performed, revealing a potential binding site for the substrate. The enzyme was heterologously expressed in E. coli Rosetta (DE3) and subsequently purified, achieving enzyme activity of 672.2 U/mg. To elucidate the role of DtCHDH in the salt tolerance of D. tertiolecta, RNAi was employed to knock down DtCHDH gene expression. The results indicated that the Ri-12 strain exhibited compromised growth under both high and low salt conditions, along with consistent levels of DtCHDH gene expression and betaine content. Additionally, fatty acid analysis indicated that DtCHDH might also be a FAPs enzyme, catalyzing reactions with decarboxylase activity. This study not only illuminates the role of choline metabolism in D. tertiolecta's adaptation to high salinity but also identifies a novel target for enhancing the NaCl tolerance of microalgae in biotechnological applications.


Asunto(s)
Betaína , Colina-Deshidrogenasa , Tolerancia a la Sal , Betaína/metabolismo , Tolerancia a la Sal/genética , Colina-Deshidrogenasa/metabolismo , Colina-Deshidrogenasa/genética , Colina/metabolismo , Chlorophyceae/genética , Chlorophyceae/fisiología , Chlorophyceae/enzimología , Chlorophyceae/metabolismo , Microalgas/genética , Microalgas/enzimología , Microalgas/metabolismo , Simulación del Acoplamiento Molecular , Cloruro de Sodio/farmacología
9.
Eur Arch Psychiatry Clin Neurosci ; 274(2): 353-362, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37148307

RESUMEN

BACKGROUND: Relapse remains the major challenge in treatment of alcohol use disorder (AUD). Aberrant decision-making has been found as important cognitive mechanism underlying relapse, but factors associated with relapse vulnerability are unclear. Here, we aim to identify potential computational markers of relapse vulnerability by investigating risky decision-making in individuals with AUD. METHODS: Forty-six healthy controls and fifty-two individuals with AUD were recruited for this study. The risk-taking propensity of these subjects was investigated using the balloon analog risk task (BART). After completion of clinical treatment, all individuals with AUD were followed up and divided into a non-relapse AUD group and a relapse AUD group according to their drinking status. RESULTS: The risk-taking propensity differed significantly among healthy controls, the non-relapse AUD group, and the relapse AUD group, and was negatively associated with the duration of abstinence in individuals with AUD. Logistic regression models showed that risk-taking propensity, as measured by the computational model, was a valid predictor of alcohol relapse, and higher risk-taking propensity was associated with greater risk of relapse to drink. CONCLUSION: Our study presents new insights into risk-taking measurement and identifies computational markers that provide prospective information for relapse to drink in individuals with AUD.


Asunto(s)
Alcoholismo , Humanos , Estudios Prospectivos , Alcoholismo/psicología , Etanol , Consumo de Bebidas Alcohólicas/psicología , Recurrencia
10.
Acta Pharmacol Sin ; 45(7): 1366-1380, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38538717

RESUMEN

Parkinson's disease (PD) is the second most common neurodegenerative disease, and its prevalence is increasing. Currently, no effective therapies for PD exist. Marine-derived natural compounds are considered important resources for the discovery of new drugs due to their distinctive structures and diverse activities. In this study, tetrahydroauroglaucin (TAG), a polyketide isolated from a marine sponge, was found to have notable neuroprotective effects on MPTP/MPP+-induced neurotoxicity. RNA sequencing analysis and metabolomics revealed that TAG significantly improved lipid metabolism disorder in PD models. Further investigation indicated that TAG markedly decreased the accumulation of lipid droplets (LDs), downregulated the expression of RUBCN, and promoted autophagic flux. Moreover, conditional knockdown of Rubcn notably attenuated PD-like symptoms and the accumulation of LDs, accompanied by blockade of the neuroprotective effect of TAG. Collectively, our results first indicated that TAG, a promising PD therapeutic candidate, could suppress the accumulation of LDs through the RUBCN-autophagy pathway, which highlighted a novel and effective strategy for PD treatment.


Asunto(s)
Metabolismo de los Lípidos , Fármacos Neuroprotectores , Animales , Metabolismo de los Lípidos/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Homeostasis/efectos de los fármacos , Poríferos/química , Ratones , Ratones Endogámicos C57BL , Autofagia/efectos de los fármacos , Masculino , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Policétidos/farmacología , Humanos
11.
J Nanobiotechnology ; 22(1): 215, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693585

RESUMEN

Stem cells (SCs) have been used therapeutically for decades, yet their applications are limited by factors such as the risk of immune rejection and potential tumorigenicity. Extracellular vesicles (EVs), a key paracrine component of stem cell potency, overcome the drawbacks of stem cell applications as a cell-free therapeutic agent and play an important role in treating various diseases. However, EVs derived from two-dimensional (2D) planar culture of SCs have low yield and face challenges in large-scale production, which hinders the clinical translation of EVs. Three-dimensional (3D) culture, given its ability to more realistically simulate the in vivo environment, can not only expand SCs in large quantities, but also improve the yield and activity of EVs, changing the content of EVs and improving their therapeutic effects. In this review, we briefly describe the advantages of EVs and EV-related clinical applications, provide an overview of 3D cell culture, and finally focus on specific applications and future perspectives of EVs derived from 3D culture of different SCs.


Asunto(s)
Técnicas de Cultivo Tridimensional de Células , Vesículas Extracelulares , Células Madre , Vesículas Extracelulares/metabolismo , Humanos , Células Madre/citología , Células Madre/metabolismo , Animales , Técnicas de Cultivo Tridimensional de Células/métodos , Técnicas de Cultivo de Célula/métodos
12.
J Nanobiotechnology ; 22(1): 339, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890734

RESUMEN

Diabetic kidney disease (DKD), a chronic kidney disease, is characterized by progressive fibrosis caused due to persistent hyperglycemia. The development of fibrosis in DKD determines the patient prognosis, but no particularly effective treatment. Here, small extracellular vesicles derived from mesenchymal stem cells (MSC-sEV) have been used to treat DKD fibrosis. Single-cell RNA sequencing was used to analyze 27,424 cells of the kidney, we have found that a novel fibrosis-associated TGF-ß1+Arg1+ macrophage subpopulation, which expanded and polarized in DKD and was noted to be profibrogenic. Additionally, Actin+Col4a5+ mesangial cells in DKD differentiated into myofibroblasts. Multilineage ligand-receptor and cell-communication analysis showed that fibrosis-associated macrophages activated the TGF-ß1/Smad2/3/YAP signal axis, which promotes mesangial fibrosis-like change and accelerates renal fibrosis niche. Subsequently, the transcriptome sequencing and LC-MS/MS analysis indicated that MSC-sEV intervention could restore the levels of the kinase ubiquitin system in DKD and attenuate renal interstitial fibrosis via delivering CK1δ/ß-TRCP to mediate YAP ubiquitination degradation in mesangial cells. Our findings demonstrate the unique cellular and molecular mechanisms of MSC-sEV in treating the DKD fibrosis niche at a single-cell level and provide a novel therapeutic strategy for renal fibrosis.


Asunto(s)
Nefropatías Diabéticas , Vesículas Extracelulares , Fibrosis , Células Madre Mesenquimatosas , Análisis de la Célula Individual , Transcriptoma , Vesículas Extracelulares/metabolismo , Células Madre Mesenquimatosas/metabolismo , Animales , Ratones , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/terapia , Masculino , Ratones Endogámicos C57BL , Humanos , Macrófagos/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta1/metabolismo , Células Mesangiales/metabolismo , Riñón/patología , Riñón/metabolismo
13.
J Nanobiotechnology ; 22(1): 447, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075563

RESUMEN

Small extracellular vesicles (sEV) derived from diverse natural killer (NK) cell lines have proven their exceptional antitumor activities. However, sEV from human primary NK cells, especially memory-like NK cells, are rarely utilized for cancer treatment. In this study, we obtained sEV from IL-12, IL-15 and IL-18 cultured human memory-like NK cells (mNK-sEV) that showed strong cytokine-secretory ability. It was uncovered that mNK-sEV entered cancer cells via macropinocytosis and induced cell apoptosis via caspase-dependent pathway. Compared to sEV from conventionally cultured NK cells (conNK-sEV), mNK-sEV inhibited tumor growth to a greater extent. Concomitantly, pharmacokinetics and biodistribution results validated a higher accumulation of mNK-sEV than conNK-sEV in tumors of xenografted murine models. Notably, elevated containment of granulysin (GNLY) within mNK-sEV, at least in part, may contribute to the enhanced therapeutic effect. Herein our results present that mNK-sEV can be a novel class of therapeutic reagent for effective cancer treatment.


Asunto(s)
Apoptosis , Citocinas , Vesículas Extracelulares , Células Asesinas Naturales , Neoplasias , Animales , Vesículas Extracelulares/metabolismo , Humanos , Células Asesinas Naturales/efectos de los fármacos , Ratones , Línea Celular Tumoral , Neoplasias/tratamiento farmacológico , Citocinas/metabolismo , Apoptosis/efectos de los fármacos , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto , Pinocitosis/efectos de los fármacos , Femenino , Ratones Endogámicos BALB C , Antígenos de Diferenciación de Linfocitos T
14.
Ecotoxicol Environ Saf ; 281: 116667, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38964068

RESUMEN

Elucidating the absorption and translocation of heavy metal(loid)s by common vegetables across different growth environments and stages is crucial for conducting accurate environmental risk assessments and for associated control. This study investigated temporal variations in the absorption and translocation capacities of pak choi (Brassica rapa L.) for As, Cd, Cr, Cu, Pb, and Zn in polluted soils during the plant growth cycle under greenhouse and open-field cultivation modes. Results showed high root metal(loid) bioconcentration factors and root-to-shoot translocation factors for Cd (0.25 and 1.44, respectively) and Zn (0.26 and 1.01), but low values for As (0.06 and 0.88) and Pb (0.06 and 0.87). The Cd concentration in the aerial edible parts peaked during the early slow growth period, whereas other heavy metal(loid)s peaked during the later stable maturity period. Root bioconcentration and root-to-shoot translocation factors did not significantly differ between cultivation modes. However, greenhouse cultivation exhibited lower average Cd and Zn concentrations in the edible parts and cumulative uptake amounts of most metal(loid)s than open-field cultivation during the typical harvest period spanning days 60 and 90. Short-term transitioning from open-field to greenhouse cultivation may reduce health risks associated with heavy metal(loid) intake via pak choi consumption. These findings facilitate sustainable agricultural practices and food safety management.


Asunto(s)
Brassica rapa , Metales Pesados , Raíces de Plantas , Contaminantes del Suelo , Contaminantes del Suelo/metabolismo , Metales Pesados/metabolismo , Brassica rapa/crecimiento & desarrollo , Brassica rapa/metabolismo , Raíces de Plantas/metabolismo , Monitoreo del Ambiente/métodos , Brotes de la Planta/metabolismo , Brotes de la Planta/crecimiento & desarrollo , Suelo/química , Agricultura/métodos
15.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39000118

RESUMEN

Multidrug-resistant P. aeruginosa infections pose a serious public health threat due to the rise in antimicrobial resistance. Phage therapy has emerged as a promising alternative. However, P. aeruginosa has evolved various mechanisms to thwart phage attacks, making it crucial to decipher these resistance mechanisms to develop effective therapeutic strategies. In this study, we conducted a forward-genetic screen of the P. aeruginosa PA14 non-redundant transposon library (PA14NR) to identify dominant-negative mutants displaying phage-resistant phenotypes. Our screening process revealed 78 mutants capable of thriving in the presence of phages, with 23 of them carrying insertions in genes associated with membrane composition. Six mutants exhibited total resistance to phage infection. Transposon insertions were found in genes known to be linked to phage-resistance such as galU and a glycosyl transferase gene, as well as novel genes such as mexB, lasB, and two hypothetical proteins. Functional experiments demonstrated that these genes played pivotal roles in phage adsorption and biofilm formation, indicating that altering the bacterial membrane composition commonly leads to phage resistance in P. aeruginosa. Importantly, these mutants displayed phenotypic trade-offs, as their resistance to phages inversely affected antibiotic resistance and hindered biofilm formation, shedding light on the complex interplay between phage susceptibility and bacterial fitness. This study highlights the potential of transposon mutant libraries and forward-genetic screens in identifying key genes involved in phage-host interactions and resistance mechanisms. These findings support the development of innovative strategies for combating antibiotic-resistant pathogens.


Asunto(s)
Elementos Transponibles de ADN , Biblioteca de Genes , Mutación , Pseudomonas aeruginosa , Pseudomonas aeruginosa/virología , Pseudomonas aeruginosa/genética , Elementos Transponibles de ADN/genética , Biopelículas/crecimiento & desarrollo , Bacteriófagos/genética , Bacteriófagos/fisiología
16.
J Infect Dis ; 228(3): 299-310, 2023 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-36722147

RESUMEN

BACKGROUND: In a phase 1/2 study, a maternal respiratory syncytial virus vaccine candidate (RSVPreF3) demonstrated an acceptable safety profile and efficiently increased RSV-specific humoral immune responses in non-pregnant women. METHODS: In this phase 2 observer-blind, placebo-controlled, randomized clinical trial (NCT04126213), the safety of RSVPreF3 (60 or 120 µg), administered during late second or third trimester, was evaluated in 213 18- to 40-year-old healthy pregnant women through 6 months postdelivery and their offspring through infancy; immunogenicity was evaluated through day 43 postdelivery and day 181 postbirth, respectively. RESULTS: RSVPreF3 was well tolerated. No pregnancy-related or neonatal adverse events of special interest were considered vaccine/placebo related. In the 60 and 120 µg RSVPreF3 groups: (1) neutralizing antibody (nAb) titers in mothers increased 12.7- and 14.9-fold against RSV-A and 10.6- and 13.2-fold against RSV-B, respectively, 1 month postvaccination and remained 8.9-10.0-fold over prevaccination at day 43 postdelivery; (2) nAb titers were consistently higher compared to placebo recipients; (3) placental transfer ratios for anti-RSVPreF3 antibodies at birth were 1.62 and 1.90, respectively, and (4) nAb levels in infants were highest at birth and declined through day 181 postbirth. CONCLUSIONS: RSVPreF3 maternal vaccination had an acceptable safety risk profile and induced robust RSV-specific immune responses with successful antibody transfer to their newborns. CLINICAL TRIALS REGISTRATION: NCT04126213.


WHAT IS THE CONTEXT?: Infants, especially those less than 6 months of age, are at increased risk of lung infection caused by respiratory syncytial virus (RSV). However, this risk could be reduced with maternal vaccination against RSV during pregnancy. A previous clinical trial found that a vaccine candidate (named RSVPreF3) was well tolerated when given to non-pregnant women. WHAT IS NEW?: In pregnant women, RSVPreF3 was also well tolerated. Occurrence of unsolicited adverse events was similar between vaccine and placebo recipients. None of the serious adverse events or events of interest for pregnant women or newborns were considered related to the study intervention. One month after vaccination, mothers who received RSVPreF3 had 11­15 times higher levels of antibodies against RSV than before vaccination. These antibody levels remained similar until 43 days after delivery. In the infants born to mothers vaccinated during pregnancy with RSVPreF3, antibody levels were highest at birth, when levels were higher than in their mothers, and declined through day 181 postbirth. WHAT IS THE IMPACT?: RSVPreF3 had an acceptable safety risk profile in pregnant women and their babies. This vaccine induced potent immune responses against RSV, with maternal antibodies transferred to infants of the vaccinated mothers.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Vacunas contra Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Embarazo , Humanos , Femenino , Lactante , Recién Nacido , Adolescente , Adulto Joven , Adulto , Anticuerpos Antivirales , Anticuerpos Neutralizantes , Madres , Infecciones por Virus Sincitial Respiratorio/prevención & control , Proteínas Virales de Fusión , Placenta , Inmunogenicidad Vacunal
17.
J Cell Mol Med ; 27(19): 2890-2905, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37488742

RESUMEN

Endometrial cancer (EC) is a common gynaecological malignant tumour with unclear pathogenesis. Small nucleolar RNA (snoRNA) is involved in many biological processes, including those of cancers. Using the Cancer Genome Atlas (TCGA) database, the expression pattern of a snoRNA, SNORA73B, was analysed. The biological functions of SNORA73B were assessed by in vitro proliferation, apoptosis, migration, and invasion assays and in vivo by the xenograft model. RNA sequencing (RNA-seq) and RNA immunoprecipitation assays were performed to determine the relationship between SNORA73B and its target genes. High-performance liquid chromatography (HPLC) was performed to detect the pseudouridine content of the mindbomb E3 ubiquitin protein ligase 1 gene (MIB1). The stability of MIB1 mRNA was evaluated using a transcription inhibitor, actinomycin D. By performing co-immunoprecipitation assays, the change in the ubiquitin levels of the Jagged canonical Notch ligand 1 (Jag 1), caused by SNORA73B and MIB1, was identified. RNA-seq and qRT-PCR were performed to detect the alternative splicing of the regulator of the chromosome condensation 1 gene (RCC1). The TCGA database analysis showed that SNORA73B was highly expressed in EC. SNORA73B promoted cell proliferation, migration, and invasion and inhibited apoptosis. SNORA73B modified the pseudouridine content in MIB1 and increased the stability of MIB1 mRNA and protein; thus, it affected Jag 1 ubiquitination and further activated the Notch pathway. SNORA73B also affected the alternative splicing of RCC1, increasing the number of transcripts, RCC1-T2 and RCC1-T3, which promoted cell proliferation, migration, and invasion. SNORA73B can be a potential target for EC.


Asunto(s)
Neoplasias Endometriales , Ubiquitina-Proteína Ligasas , Femenino , Humanos , Ubiquitina-Proteína Ligasas/metabolismo , Empalme Alternativo/genética , Seudouridina/metabolismo , ARN Nucleolar Pequeño/genética , Neoplasias Endometriales/genética , Neoplasias Endometriales/patología , ARN Mensajero/metabolismo , Proliferación Celular/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Proteínas Nucleares/genética , Proteínas de Ciclo Celular/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética
18.
EMBO J ; 38(8)2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30858281

RESUMEN

SREBPs are master regulators of lipid homeostasis and undergo sterol-regulated export from ER to Golgi apparatus for processing and activation via COPII-coated vesicles. While COPII recognizes SREBP through its escort protein SCAP, factor(s) specifically promoting SREBP/SCAP loading to the COPII machinery remains unknown. Here, we show that the ER/lipid droplet-associated protein Cideb selectively promotes the loading of SREBP/SCAP into COPII vesicles. Sterol deprivation releases SCAP from Insig and enhances ER export of SREBP/SCAP by inducing SCAP-Cideb interaction, thereby modulating sterol sensitivity. Moreover, Cideb binds to the guanine nucleotide exchange factor Sec12 to enrich SCAP/SREBP at ER exit sites, where assembling of COPII complex initiates. Loss of Cideb inhibits the cargo loading of SREBP/SCAP, reduces SREBP activation, and alleviates diet-induced hepatic steatosis. Our data point to a linchpin role of Cideb in regulated ER export of SREBP and lipid homeostasis.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Reguladoras de la Apoptosis/fisiología , Retículo Endoplásmico/fisiología , Aparato de Golgi/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Esteroles/farmacología , Animales , Proteínas Reguladoras de la Apoptosis/genética , Vesículas Cubiertas por Proteínas de Revestimiento/efectos de los fármacos , Vesículas Cubiertas por Proteínas de Revestimiento/fisiología , Retículo Endoplásmico/efectos de los fármacos , Aparato de Golgi/efectos de los fármacos , Células HEK293 , Células Hep G2 , Homeostasis , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Transporte de Proteínas , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética
19.
Biochem Biophys Res Commun ; 648: 11-20, 2023 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-36724555

RESUMEN

Non-small cell lung cancer (NSCLC) is a major global health threat with high incidence and mortality. Modulator of apoptosis-1 (MOAP1), also named MAP-1, belongs to the PNMA gene family and plays a key role in regulating apoptosis and tumor growth. However, its influences on NSCLC are largely unclear, and thus were explored in our present study, particularly the underlying mechanisms. Here, we initially find that MOAP1 expression is significantly decreased in NSCLC patients compared with the normal ones, and negatively correlated with the TNM and pathologic stages among patients. Additionally, MOAP1 low expression predicts a poorer prognosis than that of the NSCLC patients expressing higher MOAP1. Our in vitro studies confirm much lower MOAP1 expression in NSCLC cell lines. Of note, promoting MOAP1 expression strongly reduces the proliferation and induces apoptosis in NSCLC cells, accompanied with cell cycle arrest distributed in G0/G1 phase. Moreover, we find that MOAP1 has a negative correlation with Th2 cells' infiltration, but a positive correlation with the infiltration levels of eosinophils. Epithelial mesenchymal transition (EMT) process is also greatly restrained in NSCLC cells with MOAP1 over-expression, as proved by the reduced migration and invasion of cells. We further identify a positive correlation between MOAP1 and tripartite motif-containing 68 (TRIM68) in patients with NSCLC. Further analysis shows that TRIM68 directly interacts with MOAP1 and stabilizes MOAP1. Importantly, TRIM68 can activate MOAP1 by inducing the K63-linked polyubiquitination of MOAP1. Finally, animal studies verify that promoting MOAP1 efficiently suppresses tumor growth and lung metastasis in the nude mice. Collectively, our results reveal a novel mechanism through which MOAP1 stabilized by TRIM68 inhibits NSCLC development and targeting MOAP1 for its up-regulation may be a promising therapeutic strategy for NSCLC treatment.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Proteínas de Motivos Tripartitos , Animales , Ratones , Apoptosis , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/patología , Ratones Desnudos , Humanos , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas de Motivos Tripartitos/metabolismo
20.
Mol Carcinog ; 62(4): 413-426, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36562475

RESUMEN

Endometrial carcinoma is a common gynecological malignant tumor, small nucleolar RNAs (snoRNAs) are involved in cancer development. However, researches on the roles of snoRNAs in endometrial carcinoma are limited. The expression levels of snoRNAs in endometrial cancer tissues were analyzed using The Cancer Genome Atlas (TCGA) database. Antisense oligonucleotides (ASOs) and plasmids were used for transfection. Moreover, CCK-8, EdU, wound-healing assay, transwell, cell apoptosis, western blotting, and xenograft model were employed to examine the biological functions of related molecules. real-time reverse transcription polymerase chain reaction and western blotting were performed to detect messenger RNA (mRNA) and protein levels. Including bioinformatics, fluorescence in situ hybridization, RNA pulldown, actinomycin D and RTL-P assays were also carried out to explore the molecular mechanism. Analysis of data from TCGA showed that the expression level of small nucleolar RNA, C/D box 60 (SNORD60) in endometrial cancer tissues is observably higher than that in normal endometrial tissues. Further research suggested that SNORD60 played a carcinogenic role both in vitro and in vivo, and significantly upregulated the expression of PIK3CA. However, the carcinogenic effects can be reversed by knocking down fibrillarin (FBL) or PIK3CA. SNORD60 forms complexes by binding with 2'-O-methyltransferase fibrillarin, thus catalyzes the 2'-O-methylation (Nm) modification of PIK3CA mRNA and modulates the PI3K/AKT/mTOR signaling pathway, so as to promote the development of endometrial cancer. In short, SNORD60 might become a new biomarker for the therapy of endometrial cancer in the future and provide new strategies for diagnosis and treatment.


Asunto(s)
Neoplasias Endometriales , Proteínas Proto-Oncogénicas c-akt , Femenino , Humanos , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Hibridación Fluorescente in Situ , Línea Celular Tumoral , Transducción de Señal/genética , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Neoplasias Endometriales/patología , Carcinogénesis/genética , Carcinogénesis/patología , ARN Mensajero/genética , Transformación Celular Neoplásica , Fosfatidilinositol 3-Quinasa Clase I/genética , Proliferación Celular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA