Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Genomics ; 116(3): 110856, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38734154

RESUMEN

Temperature is one of the most important non-genetic sex differentiation factors for fish. The technique of high temperature-induced sex reversal is commonly used in Nile tilapia (Oreochromis niloticus) culture, although the molecular regulatory mechanisms involved in this process remain unclear. The brain is an essential organ for the regulation of neural signals involved in germ cell differentiation and gonad development. To investigate the regulatory roles of miRNAs-mRNAs in the conversion of female to male Nile tilapia gender under high-temperature stress, we compared RNA-Seq data from brain tissues between a control group (28 °C) and a high temperature-treated group (36 °C). The result showed that a total of 123,432,984 miRNA valid reads, 288,202,524 mRNA clean reads, 1128 miRNAs, and 32,918 mRNAs were obtained. Among them, there were 222 significant differentially expressed miRNAs (DE miRNAs) and 810 differentially expressed mRNAs (DE mRNAs) between the two groups. Eight DE miRNAs and eight DE mRNAs were randomly selected, and their expression patterns were validated by qRT-PCR. The miRNA-mRNA co-expression network demonstrated that 40 DE miRNAs targeted 136 protein-coding genes. Functional enrichment analysis demonstrated that these genes were involved in several gonadal differentiation pathways, including the oocyte meiosis signaling pathway, progesterone-mediated oocyte maturation signaling pathway, cell cycle signaling pathway and GnRH signaling pathway. Then, an interaction network was constructed for 8 miRNAs (mir-137-5p, let-7d, mir-1388-5p, mir-124-4-5p, mir-1306, mir-99, mir-130b and mir-21) and 10 mRNAs (smc1al, itpr2, mapk1, ints8, cpeb1b, bub1, fbxo5, mmp14b, cdk1 and hrasb) involved in the oocyte meiosis signaling pathway. These findings provide novel information about the mechanisms underlying miRNA-mediated sex reversal in female Nile tilapia.


Asunto(s)
Encéfalo , Cíclidos , MicroARNs , ARN Mensajero , Animales , MicroARNs/genética , MicroARNs/metabolismo , Cíclidos/genética , Cíclidos/metabolismo , Cíclidos/crecimiento & desarrollo , Femenino , ARN Mensajero/metabolismo , ARN Mensajero/genética , Encéfalo/metabolismo , Encéfalo/crecimiento & desarrollo , Diferenciación Sexual , Masculino , Calor , Redes Reguladoras de Genes , Procesos de Determinación del Sexo
2.
BMC Genomics ; 25(1): 64, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38229016

RESUMEN

BACKGROUND: Largemouth bass (Micropterus salmoides) has significant economic value as a high-yielding fish species in China's freshwater aquaculture industry. Determining the major genes related to growth traits and identifying molecular markers associated with these traits serve as the foundation for breeding strategies involving gene pyramiding. In this study, we screened restriction-site associated DNA sequencing (RAD-seq) data to identify single nucleotide polymorphism (SNP) loci potentially associated with extreme growth differences between fast-growth and slow-growth groups in the F1 generation of a largemouth bass population. RESULTS: We subsequently identified associations between these loci and specific candidate genes related to four key growth traits (body weight, body length, body height, and body thickness) based on SNP genotyping. In total, 4,196,486 high-quality SNPs were distributed across 23 chromosomes. Using a population-specific genotype frequency threshold of 0.7, we identified 30 potential SNPs associated with growth traits. Among the 30 SNPs, SNP19140160, SNP9639603, SNP9639605, and SNP23355498 showed significant associations; three of them (SNP9639603, SNP9639605, and SNP23355498) were significantly associated with one trait, body length, in the F1 generation, and one (SNP19140160) was significantly linked with four traits (body weight, height, length, and thickness) in the F1 generation. The markers SNP19140160 and SNP23355498 were located near two growth candidate genes, fam174b and ppip5k1b, respectively, and these candidate genes were closely linked with growth, development, and feeding. The average body weight of the group with four dominant genotypes at these SNP loci in the F1 generation population (703.86 g) was 19.63% higher than that of the group without dominant genotypes at these loci (588.36 g). CONCLUSIONS: Thus, these four markers could be used to construct a population with dominant genotypes at loci related to fast growth. These findings demonstrate how markers can be used to identify genes related to fast growth, and will be useful for molecular marker-assisted selection in the breeding of high-quality largemouth bass.


Asunto(s)
Lubina , Polimorfismo de Nucleótido Simple , Animales , Lubina/genética , Frecuencia de los Genes , Genotipo , Peso Corporal/genética
3.
Fish Shellfish Immunol ; 146: 109401, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38266792

RESUMEN

The blood-brain barrier (BBB) is mainly composed of specialized endothelial cells, which can resist harmful substances, transport nutrients, and maintain the stability of the brain environment. In this study, an endothelial cell line from tilapia (Oreochromis niloticus) named TVEC-01 was successfully established. During the earlier establishment phase of the cell line, the TVEC-01 cells were persistently exposed to an astrocyte-conditioned medium (ACM). TVEC-01 cells were identified as an endothelial cell line. TVEC-01 cells retained the multiple functions of endothelial cells and were capable of performing various experiments in vitro. Furthermore, TVEC-01 cells efficiently expressed BBB-related tight junctions and key efflux transporters. From the results of the qRT-PCR, we found that the TVEC-01 cell line did not gradually lose BBB characteristics after persistent and repetitive passages, which was different from the vast majority of immortalized endothelial cells. The results showed that ACM induced up-regulation of the expression levels of multiple BBB-related genes in TVEC-01 cells. We confirmed that Streptococcus agalactiae was capable of invading the TVEC-01 cells and initiating a series of immune responses, which provided a theoretical basis for S. agalactiae to break through the BBB of teleost through the transcellular traversal pathway. In summary, we have successfully constructed an endothelial cell line of teleost, named TVEC-01, which can be used in many experiments in vitro and even for constructing BBB in vitro. Moreover, it was confirmed that S. agalactiae broke through the BBB of teleost through the transcellular traversal pathway and caused meningitis.


Asunto(s)
Astrocitos , Barrera Hematoencefálica , Animales , Barrera Hematoencefálica/metabolismo , Astrocitos/fisiología , Medios de Cultivo Condicionados/farmacología , Medios de Cultivo Condicionados/metabolismo , Células Endoteliales/metabolismo , Encéfalo/metabolismo
4.
Fish Shellfish Immunol ; 139: 108909, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37353064

RESUMEN

The survival and growth of fish are significantly impacted by a hypoxic environment (low dissolved oxygen). In this study, we compared tissue structure, physiological changes, and mRNA/miRNA transcriptome, in gills of genetically improved farmed tilapia (GIFT, Oreochromis niloticus) between the hypoxic group (DO: 0.55 mg/L, HG) and the control group (DO: 5 mg/L, CG). The results showed that the gill filaments in the hypoxic group showed curling, engorgement, and apoptotic cells increased, and that exposure for 96 h resulted in a reduction in the antioxidant capacity. We constructed and sequenced miRNA and mRNA libraries from gill tissues of GIFT at 96 h of hypoxia stress. Between the HG and CG, a total of 14 differentially expressed (DE) miRNAs and 1557 DE genes were obtained. GO and KEGG enrichment showed that DE genes were mainly enriched in immune and metabolic pathways such as natural killer cell mediated cytotoxicity, steroid biosynthesis, primary immunodeficiency, and synthesis and degradation of ketone bodies. Based on the results of mRNA sequencing and screening for miRNA-mRNA pairs, we selected and verified six DE miRNAs and their probable target genes. The sequencing results were consistent with the qRT-PCR validation results. The result showed that under hypoxia stress, the innate immune response was up-regulated, and the adaptive immune response was down-regulated in the gill of GIFT. The synthesis of cholesterol in gill cells is reduced, which is conducive to the absorption of solvent oxygen. These findings offer fresh information about the processes of fish adaptation to hypoxic stress.


Asunto(s)
Cíclidos , Enfermedades Metabólicas , MicroARNs , Tilapia , Animales , Tilapia/metabolismo , Transcriptoma , Branquias/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Hipoxia/genética , Hipoxia/veterinaria , Oxígeno/metabolismo , ARN Mensajero/metabolismo
5.
Methods ; 202: 78-87, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-33992773

RESUMEN

The suppression of artifact noise in computed tomography (CT) with a low-dose scan protocol is challenging. Conventional statistical iterative algorithms can improve reconstruction but cannot substantially eliminate large streaks and strong noise elements. In this paper, we present a 3D cascaded ResUnet neural network (Ca-ResUnet) strategy with modified noise power spectrum loss for reducing artifact noise in low-dose CT imaging. The imaging workflow consists of four components. The first component is filtered backprojection (FBP) reconstruction via a domain transformation module for suppressing artifact noise. The second is a ResUnet neural network that operates on the CT image. The third is an image compensation module that compensates for the loss of tiny structures, and the last is a second ResUnet neural network with modified spectrum loss for fine-tuning the reconstructed image. Verification results based on American Association of Physicists in Medicine (AAPM) and United Image Healthcare (UIH) datasets confirm that the proposed strategy significantly reduces serious artifact noise while retaining desired structures.


Asunto(s)
Artefactos , Tomografía Computarizada por Rayos X , Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Redes Neurales de la Computación , Fantasmas de Imagen , Tomografía Computarizada por Rayos X/métodos
6.
Phys Chem Chem Phys ; 25(10): 7407-7416, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36846986

RESUMEN

Due to the confined mass transfer capability in microchannels, void defects are easily formed in electroformed microcolumn arrays with a high depth/width ratio, which seriously affects the life and performance of micro-devices. The width of the microchannel constantly decreases during electrodeposition, which further deteriorates the mass transfer capability inside the microchannel at the cathode. In the traditional micro-electroforming simulation model, the change of the ion diffusion coefficient is always ignored, making it difficult to accurately predict the size of void defects prior to electroforming experiments. In this study, nickel ion diffusion coefficients in microchannels are tested based on the electrochemical experiments. The measured diffusion coefficients decrease from 4.74 × 10-9 to 1.27 × 10-9 m2 s-1, corresponding to microchannels with a width from 120 to 24 µm. The simulation models of both constant and dynamic diffusion coefficients are established, and the corresponding simulation results are compared with the void defects obtained using micro-electroforming experiments. The results show that when the cathode current densities are 1, 2 and 4 A dm-2, the size of void defects obtained with the dynamic diffusion coefficient model is closer to the experimental results. In the dynamic diffusion coefficient model, the local current density and ion concentration distribution proves to be more inhomogeneous, leading to a big difference in the deposition rate of nickel between the bottom and the opening of a microchannel, and consequently a larger void defect in the electroformed microcolumn arrays. In brief, the ion diffusion coefficient inside microchannels with a different width is tested experimentally, which provides a reference for developing reliable micro-electroforming simulation models.

7.
FASEB J ; 35(11): e21972, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34613642

RESUMEN

The misalignment of eating time and the endogenous circadian rhythm impairs the body's ability to maintain homeostasis. Although it is well established that children and growing animals differ from adults in their energy metabolism and behavioral patterns, little is known about how mistimed feeding disturbs the diurnal rhythms of behavior and metabolism in children and growing diurnal animals. In this study, growing pigs (diurnal animal) were randomly assigned to the daytime-restricted feeding (DRF) and nighttime-restricted feeding (NRF) groups for 5 weeks. Compared with observations in the DRF group, NRF disrupted the diurnal rhythm of behavior and clock genes and lowered the serum ghrelin, dopamine, and serotonin levels during the daytime and nighttime. Microbiome analysis results suggested that NRF altered the diurnal rhythm and composition of the gut microbiota, and increased log-ratios of Catenibacterium:Butyrivibrio and Streptococcus:Butyrivibrio. Based on the serum proteome, the results further revealed that rhythmic and upregulated proteins in NRF were mainly involved in oxidative stress, lipid metabolism, immunity, and cancer biological pathways. Serum physiological indicators further confirmed that NRF decreased the concentration of melatonin and fibroblast growth factor 21 during the daytime and nighttime, increased the diurnal amplitude and concentrations of very-low-density lipoprotein cholesterol, triglyceride, and total cholesterol, and increased the apolipoprotein B/ApoA1 ratio, which is a marker of metabolic syndrome. Taken together, this study is the first to reveal that mistimed feeding disrupts the behavioral rhythms of growing pigs, reprograms gut microbiota composition, reduces the serum levels of hormones associated with fighting depression and anxiety, and increases the risk of lipid metabolic dysregulation.


Asunto(s)
Ritmo Circadiano , Conducta Alimentaria , Metabolismo de los Lípidos , Animales , Porcinos
8.
FASEB J ; 35(1): e21166, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33184921

RESUMEN

An unfavorable lifestyle disrupts the circadian rhythm, leading to metabolic dysfunction in adult humans and animals. Increasing evidence suggests that night-restricted feeding (NRF) can effectively prevent ectopic fat deposition caused by circadian rhythm disruption, and reduce the risk of metabolic diseases. However, previous studies have mainly focused on the prevention of obesity in adults by regulating dietary patterns, whereas limited attention has been paid to the effect of NRF on metabolism during growth and development. Here, we used weaning rabbits as models and found that NRF increased body weight gain without increasing feed intake, and promoted insulin-mediated protein synthesis through the mTOR/S6K pathway and muscle formation by upregulating MYOG. NRF improved the circadian clock, promoted PDH-regulated glycolysis and CPT1B-regulated fatty-acid ß-oxidation, and reduced fat content in the serum and muscles. In addition, NRF-induced body temperature oscillation might be partly responsible for the improvement in the circadian clock and insulin sensitivity. Time-restricted feeding could be used as a nondrug intervention to prevent obesity and accelerate growth in adolescents.


Asunto(s)
Relojes Circadianos , Ritmo Circadiano , Ingestión de Alimentos , Conducta Alimentaria , Obesidad , Animales , Masculino , Obesidad/metabolismo , Obesidad/patología , Obesidad/prevención & control , Conejos
9.
Fish Shellfish Immunol ; 127: 166-175, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35716971

RESUMEN

Transport stress poses a threat to most teleost fish in production, causing mass losses to the aquaculture industry. Fish gills are a mucosa-associated lymphoid tissue in direct contact with water, and they represent an ideal tissue type to study mechanisms of transport stress. In this study, hybrid yellow catfish (Tachysurus fulvidraco ♀ × Pseudobagrus vachellii ♂) were exposed to simulated transport stress for 16 h and then allowed to recover for 96 h. Gill tissues and blood samples were collected at 0 h, 2 h, 4 h, 8 h, and 16 h of transport stress and after 96 h of recovery, as well as from fish in a control group at the same sampling times. The activities of alkaline phosphatase, acid phosphatase, and superoxide dismutase and the total antioxidant capacity first increased and then decreased during the 16 h transport treatment. Exposure to 16 h of transport stress resulted in decreased serum triglyceride and total cholesterol contents, increased serum glucose content, increased activities of alanine aminotransferase and aspartate transaminase, and more mucus cells, compared with the control group. Transcriptome analysis revealed differential expression of 1525 genes (803 down-regulated and 722 up-regulated) between the control and 16 h transportation groups. Functional analyses revealed that the differentially expressed genes were enriched in immune response, signal transduction, and energy metabolism pathways. We found that tlr5, tnfɑ, hsp90ɑ, il-1ß, map2k4, il12ba were clearly up-regulated and arrdc2, syngr1a were clearly down-regulated following 8 h and/or 16 h simulated transport after qRT-PCR validation. These findings suggested that Toll- and NOD-like receptor signaling pathways potentially mediate transport stress. Transport stress altered innate immunity responses and energy use in the gill tissues of hybrid yellow catfish. After 96 h of recovery, only alanine aminotransferase and alkaline phosphatase activities and the number of mucus cells had returned to control levels. We speculate that for juvenile yellow catfish to recover to a normal state, a recovery period of more than 96 h is required after 16 h of transportation. These results provide new perspectives on the immune response of yellow catfish under transport stress and theoretical support for future optimization of their transportation.


Asunto(s)
Bagres , Alanina Transaminasa/metabolismo , Fosfatasa Alcalina/metabolismo , Animales , Recuento de Células , Proteínas de Peces , Branquias/metabolismo , Inmunidad Innata/genética , Moco/metabolismo , Transducción de Señal
10.
BMC Ophthalmol ; 22(1): 203, 2022 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-35508999

RESUMEN

PURPOSE: To investigate the difference of spherical equivalent (SE) and pupil diameter in adult patients with intermittent exotropia (IXT) under various viewing conditions before and after surgery. METHODS: We retrospectively analyzed the medical records of 23 adult patients who underwent a surgery for IXT. The angle of deviation was measured by the prism and alternative cover test. Refractive error and pupil diameter were measured using the Grand Seiko WAM-5500 open-field autorefractor under binocular and monocular viewing conditions when patients stared at distance (6 m) and near (33 cm). Regression analyses were performed between accommodative load and the angle of deviation. RESULTS: Twenty-three patients (10 males, 13 females) with a mean age of 31.17±8.95 years, of whom 13 (56.5%) had the right eye as the dominant eye. The mean angle of deviation at near and at distance was 69.57±26.37 and 65.43±28.92 prism diopters respectively. There were no significant differences in accommodative response and pupil diameter between the dominant and non-dominant eyes. SE decreased when patients changed from monocular to binocular viewing, and from distant to near viewing (all P< 0.05), so as the pupil diameter (all P< 0.001). During binocular, not monocular viewing, SE was significantly greater after operation than it was before operation (P< 0.001). Accommodative load and pupillary constriction narrowed (p< 0.001) after the operation. Linear regression analysis showed a correlation between the angle of deviation at distance and accommodative load at distance (r2=0.278, p=0.010) and at near (r2=0.332, p=0.005). CONCLUSION: In order to maintain ocular alignment, patients with IXT suffer a large accommodative load, which is related to the angle of deviation. Surgery helps eliminating extra accommodation.


Asunto(s)
Exotropía , Acomodación Ocular , Adulto , Enfermedad Crónica , Exotropía/cirugía , Femenino , Humanos , Masculino , Refracción Ocular , Estudios Retrospectivos , Visión Binocular/fisiología , Adulto Joven
11.
Genomics ; 113(1 Pt 2): 1207-1220, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33309769

RESUMEN

Fatty liver disease is common in cultured yellow catfish as a result of high fat contents in feeds. However, little is known about the mechanism by which the excessive deposition of liver fat causes fatty liver disease. Hybrid yellow catfish (Pelteobagrus fulvidraco♀ × P. vachelli♂) were fed a high-fat diet (HFD) or a normal-fat diet (NFD) for 60 days. Compared with the NFD group, the HFD group showed lower growth performance, higher hepatosomatic and viscerosomatic indexes, increased hepatic triglyceride and cholesterol contents, and more and larger lipid droplets in liver tissue. Whole transcriptome mRNA libraries and microRNA libraries from fish in the NFD and HFD groups were constructed by high-throughput sequencing. Twelve miRNAs were differentially expressed (DE) between the HFD and NFD groups. Seven negatively correlated DE miRNA-DE mRNA pairs were selected, and the expression patterns of both were confirmed using qRT-PCR. Hybrid yellow catfish showed mediated oxidative degradation of liver glucose and fatty acid peroxidation, regulation of antioxidant enzyme activity, and various immune and inflammatory responses to fat deposition and stress. These findings have important biological significance for protecting the liver against stress, as well as economic significance for establishing healthy aquaculture conditions.


Asunto(s)
Bagres/genética , Dieta Alta en Grasa/efectos adversos , Redes Reguladoras de Genes , Hígado/metabolismo , Transcriptoma , Animales , Bagres/metabolismo , Bagres/fisiología , Ácidos Grasos/genética , Ácidos Grasos/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Glucosa/genética , Glucosa/metabolismo , Hibridación Genética , MicroARNs/genética , MicroARNs/metabolismo , Estrés Oxidativo , ARN Mensajero/genética , ARN Mensajero/metabolismo
12.
Aquac Nutr ; 2022: 1245151, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37162816

RESUMEN

A 60-day feeding experiment was performed to evaluate the effect of dietary astaxanthin on gonad development, the antioxidant system, and its inherent mechanism in female Nile tilapia (Oreochromis niloticus). Fish were fed with diets containing astaxanthin at five levels [0 mg/kg (control), 50 mg/kg, 100 mg/kg, 150 mg/kg, and 200 mg/kg]. At the end of experiment, the group fed with 150 mg/kg astaxanthin showed significantly increased specific growth rate, feed utilization, viscerosomatic index, and hepatosomatic index compared with the control group (P < 0.05). Gonad development was stimulated in the groups fed with 100 mg/kg and 150 mg/kg astaxanthin, and their gonadosomatic index and egg diameter were significantly higher than those of the control group and the group fed with 200 mg/kg astaxanthin. The ovaries of females in the groups fed with 100 mg/kg and 150 mg/kg astaxanthin were fully developed, the eggs were gray-yellow and uniform in size, and a large number of oocytes developed to stages IV and V. The serum levels of 17 ß-estradiol, follicle-stimulating hormone, and luteinizing hormone were significantly higher in the groups fed with 100 mg/kg and 150 mg/kg astaxanthin than in the group fed with 200 mg/kg astaxanthin. Compared with the control and the other groups, the group fed with 150 mg/kg astaxanthin showed significantly higher transcript levels of genes encoding hormone receptors and higher catalase activity in ovarian tissues, lower malondialdehyde content, decreased apoptosis (reduced granulosa cell apoptosis and lower transcript levels of bax and caspase-3), and reduced follicular atresia. Gene ontology analyses revealed that cell division and the cell cycle were enriched with differentially expressed genes in the group fed with 150 mg/kg astaxanthin, compared with the control group. We concluded that dietary astaxanthin at a concentration of 150 mg/kg activates follicle development by inhibiting expression of mapk1 (involved in MAPK signaling) and increasing the expression genes involved in oocyte meiosis (chp2, ppp3ca, map2k1, and smc1a1) and progesterone-mediated oocyte maturation (igf1, plk1, and cdk1). In conclusion, female Nile tilapia fed with 150 mg/kg astaxanthin showed increased growth, reduced oxidative stress in ovarian tissue, lower levels of cell apoptosis, and improved oocyte development.

13.
BMC Genomics ; 22(1): 105, 2021 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-33549051

RESUMEN

BACKGROUND: Dissolved oxygen (DO) in the water is a vital abiotic factor in aquatic animal farming. A hypoxic environment affects the growth, metabolism, and immune system of fish. Glycolipid metabolism is a vital energy pathway under acute hypoxic stress, and it plays a significant role in the adaptation of fish to stressful environments. In this study, we used multi-omics integrative analyses to explore the mechanisms of hypoxia adaptation in Genetically Improved Farmed Tilapia (GIFT, Oreochromis niloticus). RESULTS: The 96 h median lethal hypoxia (96 h-LH50) for GIFT was determined by linear interpolation. We established control (DO: 5.00 mg/L) groups (CG) and hypoxic stress (96 h-LH50: 0.55 mg/L) groups (HG) and extracted liver tissues for high-throughput transcriptome and metabolome sequencing. A total of 581 differentially expressed (DE) genes and 93 DE metabolites were detected between the CG and the HG. Combined analyses of the transcriptome and metabolome revealed that glycolysis/gluconeogenesis and the insulin signaling pathway were down-regulated, the pentose phosphate pathway was activated, and the biosynthesis of unsaturated fatty acids and fatty acid metabolism were up-regulated in GIFT under hypoxia stress. CONCLUSIONS: The results show that lipid metabolism became the primary pathway in GIFT under acute hypoxia stress. Our findings reveal the changes in metabolites and gene expression that occur under hypoxia stress, and shed light on the regulatory pathways that function under such conditions. Ultimately, this information will be useful to devise strategies to decrease the damage caused by hypoxia stress in farmed fish.


Asunto(s)
Cíclidos , Tilapia , Animales , Cíclidos/genética , Glucolípidos/metabolismo , Hipoxia/genética , Hipoxia/metabolismo , Metabolismo de los Lípidos , Hígado/metabolismo , Tilapia/genética
14.
Small ; 17(39): e2103301, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34473395

RESUMEN

The nucleation and growth of bubbles within a solid matrix is a ubiquitous phenomenon that affects many natural and synthetic processes. However, such a bubbling process is almost "invisible" to common characterization methods because it has an intrinsically multiphased nature and occurs on very short time/length scales. Using in situ transmission electron microscopy to explore the decomposition of a solid precursor that emits gaseous byproducts, the direct observation of a complete nanoscale bubbling process confined in ultrathin 2D flakes is presented here. This result suggests a three-step pathway for bubble formation in the confined environment: void formation via spinodal decomposition, bubble nucleation from the spherization of voids, and bubble growth by coalescence. Furthermore, the systematic kinetics analysis based on COMSOL simulations shows that bubble growth is actually achieved by developing metastable or unstable necks between neighboring bubbles before coalescing into one. This thorough understanding of the bubbling mechanism in a confined geometry has implications for refining modern nucleation theories and controlling bubble-related processes in the fabrication of advanced materials (i.e., topological porous materials).

15.
Fish Shellfish Immunol ; 119: 409-419, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34687881

RESUMEN

Fish gills are the primary organ that respond to sudden changes in the dissolved oxygen (DO) level in the aquatic environment. Hypoxic stress impairs the normal function of gill tissues. However, little is known about the mechanisms of the response of yellow catfish gills to hypoxic stress. In this study, we compared transcriptomic and physiological changes in gill tissues of hybrid yellow catfish (Tachysurus fulvidraco ♀ × Pseudobagrus vachellii ♂) between a hypoxia-treated group (DO: 1.5 mg/L) and a control group (DO: 6.5 mg/L). In fish in the hypoxia-treated group, gill filaments underwent adaptive changes, and the number of vacuoles in gill tissues increased. Exposure to hypoxic conditions for 96 h resulted in increased anaerobic metabolism and decreased antioxidant and immune capacity in gill tissues. Transcriptome analyses revealed 1556 differentially expressed genes, including 316 up-regulated and 1240 down-regulated genes, between fish in the hypoxia-treated and control groups. Functional analyses indicated that the main pathway enriched with differentially expressed genes was immune response, followed by energy metabolism and signal transduction. Under hypoxic stress, the transcript levels of genes involved in the NOD-like receptor signaling pathway initially increased rapidly but then decreased over time, suggesting that the NOD-like receptor-mediated immune response plays an essential role in hypoxia tolerance and resistance in hybrid yellow catfish. Our results provide novel insights into which immune-related genes and pathways are activated under hypoxic stress, and reveal details of early adaptation of the immune response and defense mechanisms under hypoxic stress.


Asunto(s)
Bagres , Animales , Bagres/genética , Perfilación de la Expresión Génica , Branquias , Hipoxia/genética , Hipoxia/veterinaria , Inmunidad , Proteínas NLR , Oxígeno , Transcriptoma
16.
J Therm Biol ; 97: 102889, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33863448

RESUMEN

For successful reproduction of farmed fish, it is important to understand the relationship between gonadal development and environmental factors such as temperature and photoperiod. In this study, we determined the effects of temperature (T) and photoperiod (Pp) on serum estradiol-17ß (E2) and progesterone (P) contents, gonadosomatic index (GSI), and oocyte development in female tilapia. We used a central composite experimental design and response surface methodology. The experimental ranges were 18-36 °C for T and 0-24 h for Pp. The results show that the quadratic effects of T and Pp were highly significant for serum E2 and P contents, GSI, and the ratio of stage III to stage II oocytes (P < 0.01), and that the linear effects of T and Pp were also significant for these indicators (P < 0.05). The T × Pp interaction significantly affected serum E2 content (P < 0.05). Serum E2 and P content, GSI, and the ratio of stage III to stage II oocytes increased and then decreased with increasing T or Pp. The best combination of T and Pp for egg development was 28.6 °C/14.29 h. We observed the part of ovarian tissue containing stage V oocytes that are about to be discharged. Shortening the photoperiod or lowering the water temperature delayed the development of ovarian tissue so that most oocytes remained at stage II, and there were many atretic follicles. There were significant positive correlations between female GSI and serum E2, P, and the ratio of stage III to stage II oocytes. The results of this study provide a reference for the regulation of temperature and photoperiod to control broodstock gonadal maturation and hormone-induced broodstock spawning.


Asunto(s)
Cíclidos/sangre , Cíclidos/fisiología , Fotoperiodo , Temperatura , Animales , Acuicultura/métodos , Estradiol/sangre , Femenino , Oocitos/crecimiento & desarrollo , Oogénesis , Ovario/crecimiento & desarrollo , Progesterona/sangre
17.
Fish Shellfish Immunol ; 97: 540-553, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31881329

RESUMEN

This study investigated the effects of dietary curcumin on growth performance, non-specific immunity, antioxidant capacity and related genes expression of NF-κB and Nrf2 signaling pathways in grass carp (Ctenopharyngodon idella). A total of 525 juvenile grass carps with mean initial body weight of (5.30 ± 0.10) g were randomly distributed into five groups with three replicates each, fed five diets containing graded levels of curcumin (0, 196.11, 393.67, 591.46 and 788.52 mg/kg diet) for 60 days. After feeding trial, fifteen fish per tank were challenged with Aeromonas hydrophila and the mortalities were recorded for 7 days. The results showed that optimal dietary curcumin (393.67 mg/kg diet) improved the weight gain (WG) and specific growth rate (SGR) of juvenile grass carp, reduced feed conversion ratio (FCR) and the mortalities after challenge (P < 0.05). Moreover, optimal dietary curcumin increased the activities of lysozyme (LYZ) and acid phosphatase (ACP), and complement 3 (C3) and C4 levels, decreased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities in serum of grass carp after injection with A. hydrophila (P < 0.05). Meanwhile, optimal dietary curcumin up-regulated the mRNA levels of LYZ, C3 and antimicrobial peptides [hepcidin, liver-expressed antimicrobial peptide-2 (LEAP-2), ß-defensin], and anti-inflammatory cytokines of interleukin-10 (IL-10) and transforming growth factor ß1 (TGF-ß1), and inhibitor of κBα (IκBα), whereas down-regulated pro-inflammatory cytokines of tumor necrosis factor-α (TNF-α), IL-1ß, IL-6 and IL-8, and nuclear factor kappa B p65 (NF-κB p65), IκB kinases (IKKα, IKKß and IKKγ) mRNA levels in the liver and blood of grass carp after injection with A. hydrophila (P < 0.05). In addition, optimal dietary curcumin increased the reduced glutathione (GSH) content and activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST) and glutathione reductase (GR), reduced reactive oxygen species (ROS) and malondialdehyde (MDA) levels in the liver of grass carp after injection with A. hydrophila (P < 0.05). Meanwhile, optimal dietary curcumin up-regulated the mRNA levels of these antioxidant enzymes and nuclear factor erythroid 2-related factor 2 (Nrf2), whereas down-regulated Kelch-like ECH-associated protein (Keap) 1a and Keap 1b mRNA levels (P < 0.05) in the liver and blood of grass carp after injection with A. hydrophila. Thus, optimal dietary curcumin supplementation could promote growth of juvenile grass carp, reduce FCR, and enhance disease resistance, innate immunity and antioxidant capacity of fish, attenuating inflammatory response. However, dietary excessive curcumin had negative effect on fish. Based on second-order regression analysis between dietary curcumin contents and weight gain, the optimum requirement of dietary curcumin in juvenile grass carp was determined to be 438.20 mg/kg diet.


Asunto(s)
Carpas/crecimiento & desarrollo , Carpas/inmunología , Curcumina/farmacología , Suplementos Dietéticos/análisis , Proteínas de Peces/inmunología , Infecciones por Bacterias Gramnegativas/veterinaria , Transducción de Señal , Aeromonas hydrophila , Alimentación Animal/análisis , Animales , Antioxidantes/metabolismo , Carpas/microbiología , Citocinas/inmunología , Resistencia a la Enfermedad , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/prevención & control , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/prevención & control , Inmunidad Innata , Factor 2 Relacionado con NF-E2/inmunología , FN-kappa B/inmunología
18.
Int J Med Sci ; 17(11): 1499-1507, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32669952

RESUMEN

Background: Circular RNAs (circRNAs) represent a class of broad and diversified endogenous RNAs that regulate gene expressions in eukaryotes. Hsa_circ_006675 has been proven as an important circRNA molecule in nasopharyngeal carcinoma (NPC), however, its function still remains elusive. This study aims to discuss the biofunctions of hsa_circ_0066755 in NPC. Methods: We detected the expression levels of hsa_circ_0066755 in NPC patients by quantitative real-time polymerase chain reaction (qRT-PCR), and the corresponding ROC curves were plotted. Functional experiments including CCK-8, colony formation, Transwell assay and Xenograft experiment were conducted. Bioinformatics analysis was performed to seek miRNAs which might have binding sites with hsa_circ_0066755. Luciferase reporter assays were finally carried out to verify the binding sites. Results: We found significant increases of hsa_circ_0066755 in the plasma and tissues of the patients. Moreover, its levels were positively correlated with clinical staging (P=0.019). The receiver operating characteristic (ROC) analysis showed that the area under the curves (AUCs) of tissue and plasma hsa_circ_0066755 for distinguishing NPC from non-cancerous controls were 0.8537 and 0.9044, respectively. Both tissue and plasma hsa_circ_0066755 testing presented a comparable diagnostic accuracy to the magnetic resonance imaging (MRI). Our in-vitro experiment showed that the overexpression of hsa_circ_0066755 facilitated the growth, proliferation, clone formation, invasion and migration of CNE-1 NPC cells, while its down-regulation showed completely opposite effects. The xenograft experiment showed that exogenous hsa_circ_0066755 could significantly enhance the in-vivo tumorigenic ability of CNE-1 cells. Rescue assay further confirmed hsa_circ_0066755 as a tumor facilitator by sponging miR-651. Conclusions: Collectively, this study reported for the first time that hsa_circ_0066755 played a role of oncogene in NPC and could be used as an effective diagnostic marker for NPC, and that hsa_circ_0066755 / miR-651 axis also involved in the progression of NPC.


Asunto(s)
Regulación Neoplásica de la Expresión Génica/fisiología , Carcinoma Nasofaríngeo/metabolismo , Neoplasias Nasofaríngeas/metabolismo , ARN Circular/metabolismo , Animales , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Supervivencia Celular/genética , Supervivencia Celular/fisiología , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , MicroARNs/genética , MicroARNs/metabolismo , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/patología , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patología , ARN Circular/genética , Cicatrización de Heridas/genética , Cicatrización de Heridas/fisiología
19.
J Therm Biol ; 93: 102681, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33077108

RESUMEN

Members of the ACOT (acyl-CoA thioesterase) family hydrolyze fatty acyl-CoA to form free fatty acids (FFAs) and coenzyme A (CoA). These enzymes play important roles in fatty acid metabolism. Here, we report the cloning and functional analysis of acot11ß in hybrid yellow catfish (Pelteobagrus fulvidraco ♀ × P. vachelli ♂). The open reading frame of acot11ß was found to be 594 bp in length, encoding 198 amino acids. We determined the transcript levels of acot11ß in ten tissues of hybrid yellow catfish by qRT-PCR and found that it was highly expressed in the liver, so we chose the liver for further analysis. We determined the transcript levels of acot11ß in hybrid yellow catfish under heat stress conditions, and analyzed the changes in serum biochemical parameters, liver biochemical parameters, and transcript levels of lipid metabolism-related genes. Healthy yellow catfish were subjected to heat stress at 35 °C for 96 h, and the experimental results were compared with those from fish in a control group (28 °C). The levels of glucose (GLU), total cholesterol (TC), and triglyceride (TG) in serum were significantly increased in the heat-stressed group compared with the control group (P < 0.05). Acute heat stress led to decreased liver glycogen contents, but significantly increased TC and TG contents in the liver (P < 0.05). The transcript levels of acot11ß, acc, and fas were significantly reduced, while that of pparα was significantly increased in hybrid yellow catfish exposed to heat stress (P < 0.05). Our results indicate that acot11ß plays an important role in regulating lipid metabolism in hybrid yellow catfish, and this metabolic process is greatly affected by temperature. These results may be useful for developing effective strategies to prevent or reduce metabolic disorders of yellow catfish caused by high temperature.


Asunto(s)
Bagres/genética , Proteínas de Peces/genética , Respuesta al Choque Térmico , Palmitoil-CoA Hidrolasa/genética , Animales , Glucemia/metabolismo , Bagres/metabolismo , Colesterol/sangre , Proteínas de Peces/metabolismo , Hibridación Genética , Metabolismo de los Lípidos , Hígado/metabolismo , Especificidad de Órganos , PPAR alfa/genética , PPAR alfa/metabolismo , Palmitoil-CoA Hidrolasa/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Triglicéridos/sangre
20.
Zhongguo Zhong Yao Za Zhi ; 45(20): 4991-4996, 2020 Oct.
Artículo en Zh | MEDLINE | ID: mdl-33350274

RESUMEN

To investigate the effect of butyl alcohol extract of Baitouweng Decoction(BAEB) on the epithelial barrier of vaginal mucosa in mice with vulvovaginal candidiasis(VVC). Seventy-two female SPF Kunming mice were randomly divided into blank group, VVC model group, fluconazole group, and BAEB treatment groups(high, middle and low dose groups). Estradiol benzoate was injected subcutaneously qd alt, and Candida albicans(2×10~6 CFU·mL~(-1)) was inoculated into the vagina of mice during the pseudo estrus period for 7 days to construct a VVC model, followed by drug treatment for 7 days. Gram staining was used to observe the morphology of C. albicans in the vaginal secretions of mice; the amount of fungal load on the vaginal mucosa of mice was detected on agar plate; the pathological status of murine vaginal mucosa was observed by hematoxylin-eosin staining(HE); the integrity of mice vaginal mucosal epithelial barrier was observed by Masson's trichrome staining(MT), HE and periodic acid-schiff staining(PAS). Mucin-1 and mucin-4 protein expression levels of vaginal mucosal epithelial cells in mice were detected by immunohistochemistry; mucin-1 and mucin-4 protein expression levels on mucosal epithelial cells at 0 d, 3 d, and 7 d were determined by Western blot. The results showed that, in VVC model group, there were a large number of C. albicans hyphae and higher fungal load in vagina, within complete mucosal structure, cornified layer shed off, and the protein expression levels of mucin-1 and mucin-4 were significantly increased. After BAEB treatment, the hyphae in the vagina decreased; the fungal load decreased; the vaginal mucosal tissue damages were improved; the epithelial barrier was repaired, and mucin-1 and mucin-4 protein expression levels were down-regulated. The above results indicated that BAEB may play a role in the treatment of VVC by remodeling the integrity of the vaginal mucosal epithelial barrier.


Asunto(s)
Candidiasis Vulvovaginal , 1-Butanol , Animales , Antifúngicos , Candida albicans , Candidiasis Vulvovaginal/tratamiento farmacológico , Femenino , Humanos , Ratones , Membrana Mucosa , Vagina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA