Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
1.
J Am Chem Soc ; 146(10): 6652-6664, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38419303

RESUMEN

Nitrile compounds are abundant, stable, cheap, and readily available natural and chemical industrial sources. However, the efficient conversion of nitrile monomers to functional polymers is mostly limited due to their inert reactivity, and developing efficient polymerizations based on nitrile monomers under very mild conditions is still a big challenge. In this work, a facile and powerful base-catalyzed acetonitrile-azide click polymerization was successfully established under ambient conditions. This polymerization also enjoys the merits of short reaction time (15 min), 100% atom economy, transition-metal-free catalyst system, and regioselectivity. A series of poly(5-amino-1,2,3-triazole)s (PATAs) with high weight-average molecular weights (Mw, up to 204,000) were produced in excellent yields (up to 99%). The PATAs containing tetraphenylethene (TPE) moieties exhibit unique aggregation-induced emission (AIE) characteristics, which could be used to sensitively detect Fe(III) ions with a low limit of detection (1.205 × 10-7 M) and to specifically image lysosomes of living cells. Notably, PATAs could be facilely post-modified due to their containing primary amino groups in the polymer chains even through a one-pot tandem reaction. Thus, this work not only establishes a new powerful click polymerization to convert stable nitriles but also generates a series of PATAs with versatile properties for diverse applications.

2.
J Am Chem Soc ; 146(25): 17270-17284, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38863213

RESUMEN

Transition-metal-catalyzed C-H activation has greatly benefited the synthesis and development of functional polymer materials, and the construction of multifunctional fused (hetero)cyclic polymers via novel C-H activation-based polyannulations has emerged as a charming but challenging area in recent years. Herein, we report the first cobalt(III)-catalyzed cascade C-H activation/annulation polymerization (CAAP) approach that can efficiently transform readily available aryl thioamides and internal diynes into multifunctional sulfur-containing fused heterocyclic (SFH) polymers. Within merely 3 h, a series of SFH polymers bearing complex and multisubstituted S,N-doped polycyclic units are facilely and efficiently produced with high molecular weights (absolute Mn up to 220400) in excellent yields (up to 99%), which are hard to achieve by traditional methods. The intermediate-terminated SFH polymer can be used as a reactive macromonomer to controllably extend or modify polymer main chains. The structural diversity can be further enriched through facile S-oxidation and N-methylation reactions of the SFH polymers. Benefiting from the unique structures, the obtained polymers exhibit excellent solution processability, high thermal and morphological stability, efficient and readily tunable aggregate-state fluorescence, stimuli-responsive properties, and high and UV-modulatable refractive indices of up to 1.8464 at 632.8 nm. These properties allow the SFH polymers to be potentially applied in diverse fields, including metal ion detection, photodynamic killing of cancer cells, fluorescent photopatterning, and gradient-index optical materials.

3.
Small ; 20(23): e2307309, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38150611

RESUMEN

Ferroptosis is associated with the occurrence and development of many diseases, which is the result of an imbalance in cellular metabolism and oxidation-reduction balance. Therefore, it is an effective therapeutic strategy that simultaneously regulating the intracellular oxidation-reduction system. Herein, a click reaction of alkynylamide with thiol groups in the presence of amine or in PBS (pH = 7.4) is developed, which can react efficiently with thiol substances, such as cysteine (Cys), glutathione (GSH), and bovine serum albumin (BSA). Notably, MBTB-PA, an aggregation-induced emission (AIE) photosensitizer with an alkynylamide unit, is synthesized and its intracellular behavior is visualized in situ by fluorescence imaging, demonstrating its excellent ability to target the endoplasmic reticulum. Furthermore, MBTB-PA reacted with proteins in tumor cells, consumed reducing substances, and triggered intracellular oxidative stress, resulting in cell death. Based on this reaction therapy strategy, click reaction is combined with photodynamic therapy to achieve effective killing of tumor cells by simultaneously raising the intracellular oxidative state and reducing the reductive state. This work not only develops an application of click reaction of alkynamide with thiol in bioconjugation and anti-tumor therapy, but also provides feasible ideas for organic reactions in the exploration of organisms.


Asunto(s)
Química Clic , Compuestos de Sulfhidrilo , Compuestos de Sulfhidrilo/química , Humanos , Línea Celular Tumoral , Animales , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico
4.
Angew Chem Int Ed Engl ; 63(30): e202406381, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38744675

RESUMEN

Energy conversion, particularly light to heat conversion, has garnered significant attention owing to its prospect in renewable energy exploitation and utilization. Most previous efforts have focused on developing organic photothermal materials for low-temperature applications, whereas the importance of simplifying the preparation methods of photothermal materials and enhancing their maximum photothermal temperature have been less taken. Herein, we prepare an organic near-infrared (NIR) photothermal material namely ATT by a spontaneous [2+2] cycloaddition-cycloreversion reaction. In addition to the solution-based method, ATT could also be readily preapred by ball milling in a high yield of 90 % in just 15 min. ATT powder exhibits a broad absorption extending beyond 2000 nm, excellent processability, and thermal stability. Remarkably, ATT powder can reach an unprecedently temperature as high as 450 °C while maintaining excellent photostability upon photoirradiation. Leveraging its extraordinary photothermal and processable properties, ATT was used in the high-temperature applications, such as photo-ignition, photo-controlled metal processing and high-temperature shape memory, all of which offer spatiotemporal control capabilities. This work provides a new approach to prepare organic photothermal materials with high temperatures, and pave the way for their applications in extreme environments.

5.
Angew Chem Int Ed Engl ; 62(43): e202310388, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37668100

RESUMEN

Aggregation-induced emission (AIE) luminogens (AIEgens) are attractive for the construction of non-doped blue organic light-emitting diodes (OLEDs) owning to their high emission efficiency in the film state. However, the large internal inversion rate (kIC (Tn) ) between high-lying triplet levels (Tn ) and Tn-1 causes a huge loss of triplet excitons, resulting in dissatisfied device performance of these AIEgens-based non-doped OLEDs. Herein, we designed and synthesized a blue luminogen of DPDPB-AC by fusing an AIEgen of TPB-AC and a DMPPP, which feature hot exciton and triplet-triplet annihilation (TTA) up-conversion process, respectively. DPDPB-AC successfully inherits the AIE feature and excellent horizontal dipole orientation of TPB-AC. Furthermore, it owes smaller kIC (Tn) than TPB-AC. When DPDPB-AC was applied in OLED as non-doped emitting layer, an outstanding external quantum efficiency of 10.3 % and an exceptional brightness of 69311 cd m-2 were achieved. The transient electroluminescent measurements and steady-state dynamic analysis confirm that both TTA and hot exciton processes contribute to such excellent device performance. This work provides a new insight into the design of efficient organic fluorophores by managing high-lying triplet excitons.

6.
J Am Chem Soc ; 144(4): 1672-1680, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-34961318

RESUMEN

Through mimicking the synthesis of hereditary-information-containing nucleic acids, scientists are committed to synthesizing sequence-defined macromolecules. Herein, a protecting-group-free, metal-free, and atom-economical chemistry combining hydroxyl-yne and thiol-ene click reactions was developed to efficiently synthesize sequence-defined oligo(monothioacetals) (overall yield of 54% for an 11-step synthesis) from readily available starting compounds and monomers under ambient conditions. The sequences of linear oligo(monothioacetals) could be easily decoded via a tandem ESI-MS/MS technique, making them new kinds of digital macromolecules with a high data storage density (0.013 bit/Da). Moreover, star oligo(monothioacetals) could also be facilely generated through divergent and convergent strategies and their combination. An unprecedented sequence-defined miktoarm star oligo(monothioacetal) was obtained, which could serve as a new nonlinear digital macromolecule to achieve 2D information matrix encoding and hold great potential to be applied for information encryption, anticouterfeiting, secret communication, etc. Thus, this work provides a powerful stepwise iterative approach to facilely access sequence-defined linear and topological oligo(monothioacetals) for high-density data storage.

7.
Chemistry ; 28(63): e202202388, 2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-35969216

RESUMEN

Pathogenic bacteria infections, especially multidrug resistant bacteria infections have aroused worldwide attention due to their severe threats to human beings. Thus, the development of highly effective antibacterial reagents is very important. However, the design of antimicrobials is still quite challenging for the lack of a universal design strategy. Here, a synergistic manipulation strategy of dipole-dipole and anion-π+ interaction is proposed for constructing highly efficient antimicrobials with aggregation-induced emission (AIE) feature. Firstly, four anion-π+ -type AIE luminogens were designed and synthesized. Due to the electron-donating and hydrophilic characteristic of methoxy groups, 3MOTPO containing three methoxy groups showed the largest dipole moment (5.06 Debye) and dual anion-π+ interactions in the solid state. Driven by both dipole-dipole and anion-π+ interactions, 3MOTPO showed the strongest bacterial binding ability and the best antibacterial activities (MIC90 =3.76 µM). The work offers a deep insight into the rational design of highly efficient antimicrobials for luminescence-guided antibacterial study.


Asunto(s)
Antibacterianos , Antiinfecciosos , Humanos , Antibacterianos/farmacología , Aniones , Luminiscencia , Bacterias
8.
Biomacromolecules ; 23(6): 2185-2196, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35171563

RESUMEN

Biomacromolecules featuring aggregation-induced-emission (AIE) characteristics generally present new properties and performances that are silent in the molecular state, providing endless possibilities for the evolution of biomedical applications. Tremendous achievements based on the research of AIE-active biomacromolecules have been made in synthetic exploration, material development, and practical applications. In this Perspective, we give a brief account in the development of AIE-active biomacromolecules. Remarkable progresses have been made in the exploration of AIE-active biomacromolecule preparation, structure-property relationships, and the relevant biomedical applications. The existing challenges and promising opportunities, as well as the future directions in AIE-active biomacromolecule research, are also discussed. It is expected that this Perspective can act as a trigger for the innovation of AIE-active biomacromolecule research and aggregate science.

9.
Angew Chem Int Ed Engl ; 61(21): e202202005, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35257452

RESUMEN

Facile tailoring of photosensitizers (PSs) with advanced and synergetic properties is highly expected to broaden and deepen photodynamic therapy (PDT) applications. Herein, a catalyst-free thiol-yne click reaction was employed to develop the sulfur atom-based PSs by using the in situ formed sulfur "heavy atom effect" to enhance the intersystem crossing (ISC), while such an effect can be remarkably magnified by the polymerization. The introduction of a tetraphenylpyrazine-based aggregation-induced emission (AIE) unit was also advantageous in PS design by suppressing their non-radiative decay to facilitate the ISC in the aggregated state. Besides, the resulting sulfur atom electron donor, together with a double-bond π bridge and AIE electron acceptor, created a donor-π-acceptor (D-π-A) molecular system with good two-photon excitation properties. Combined with the high singlet oxygen generation efficiency, the fabricated polymer nanoparticles exhibited an excellent in vitro two-photon-excited PDT towards cancer cells, therefore possessing a huge potential for the deep-tissue disease therapy.


Asunto(s)
Fotoquimioterapia , Fármacos Fotosensibilizantes , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/química , Polimerizacion , Oxígeno Singlete , Azufre
10.
Chemistry ; 27(22): 6760-6766, 2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33543548

RESUMEN

Recently, scientists have reported a range of chiral fluorescence materials or chiral composites that can emit circularly polarized luminescence. Herein, two achiral metal-organic colloidal solutions were studied, showing active circularly polarized luminescence, which is observed in vortex stirring. The absolute values for glum are 0.05 and 0.03 and the plus or minus sign of glum depends on the colloidal structure and stirring direction, which make the property easy to manipulate. Further, the host-guest interaction study suggests both electrostatic interactions and coordination bonding may influence the chiroptical property from the colloidal solution to the guest molecule. Rhodamine 6G and its carboxylic acid derivative exhibit good quantum yields and acceptable glum values in the colloidal solution.

11.
J Org Chem ; 86(1): 110-127, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33263405

RESUMEN

A three-component reaction has been developed for the construction of multiaryl-substituted pyrrole derivatives from arylketones, amines, and nitrovinylarenes under metal-free conditions. Hence, homologous 1,2,4-triaryl-substituted pyrrole products were obtained in good to high yields. Furthermore, 2,3,5-triaryl-substituted pyrroles were selectively formed in the absence of nitrovinylarenes. The photophysical properties of some pyrrole products have been investigated to show good aggregation-induced emission (AIE) activity.

12.
Macromol Rapid Commun ; 42(6): e2000547, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33314433

RESUMEN

Green monomers, such as oxygen (O2 ), water (H2 O), and carbon dioxide (CO2 ), refer to a kind of natural reagents with abundant, nontoxic, cheap, environmentally friendly, renewable, and sustainable features. These monomers have been used in multicomponent polymerizations (MCPs) toward functional polymers. In this review, the recent development of MCPs involving green monomers of O2 -, H2 O-, and CO2 is summarized. The catalytic systems, polymerization conditions, the molecular weights, and potential applications of resultant polymers are briefly discussed. Furthermore, the existing challenges and the promising opportunities are concisely provided.


Asunto(s)
Polímeros , Catálisis , Sustancias Macromoleculares , Peso Molecular , Polimerizacion
13.
Angew Chem Int Ed Engl ; 60(35): 19222-19231, 2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-33991002

RESUMEN

We reported an efficient multicomponent polyannulation for in situ generation of heteroaromatic hyperbranched polyelectrolytes by using readily accessible internal diynes and low-cost, commercially available arylnitriles, NaSbF6 , and H2 O/AcOH. The polymers were obtained in excellent yields (up to 99 %) with extraordinary high molecular weights (Mw up to 1.011×106 ) and low polydispersity indices. The resulting polymers showed good processibility and high quantum yields with tunable emission in the solid state, making them ideal materials for highly ordered fluorescent photopatterning. These hyperbranched polyelectrolytes also possessed strong ability to generate reactive oxygen species, which allowed their applications in efficient bacterial killing and customizable photodynamic patterning of living organisms in a simple and cost-effective way.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Compuestos Heterocíclicos/farmacología , Hidrocarburos Aromáticos/farmacología , Polielectrolitos/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Bacterias/metabolismo , Compuestos Heterocíclicos/química , Hidrocarburos Aromáticos/química , Estructura Molecular , Peso Molecular , Polielectrolitos/síntesis química , Polielectrolitos/química , Especies Reactivas de Oxígeno/metabolismo
14.
Macromol Rapid Commun ; 41(12): e2000179, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32463567

RESUMEN

As an important nitrogen source, isocyanides have been involved in numerous organic reactions. As a result, many complicated compounds have been successfully synthesized through isocyanide chemistry. However, compared with its popular research in organic reactions, the application of isocyanides in polymerization is less investigated. In this work, a new polymerization based on isocyanide monomers is established. By simply mixing diisocyanoacetates and dialdehydes in the presence of a catalytic system of CuCl/PPh3 /organobase in dichloromethane at room temperature readily produces soluble and thermally stable oxazoline-containing polymers with moderate weight-averaged molecular weights (Mw up to 11 200) in excellent yields (up to 97%) after 6 h. Furthermore, introducing the tetraphenylethene moiety into the main chains endows the resultant polymers with aggregation-induced emission, which can function as fluorescent probes for Fe3+ ion detection with high sensitivity and selectivity. This work not only enriches the family of isocyanide-based polymerizations but also provides an efficient tool for the preparation of functional heterocycle-containing polymers.


Asunto(s)
Aldehídos/química , Cianuros/química , Colorantes Fluorescentes/química , Oxazoles/química , Polímeros/síntesis química , Compuestos Férricos/análisis , Colorantes Fluorescentes/síntesis química , Iones/análisis , Sustancias Macromoleculares/síntesis química , Sustancias Macromoleculares/química , Polimerizacion , Polímeros/química
15.
J Chem Phys ; 152(12): 120902, 2020 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-32241145

RESUMEN

The past two decades have witnessed increasingly rapid advances in the field of single-molecule electronics, which are expected to overcome the limitation of the miniaturization of silicon-based microdevices, thus promoting the development of device manufacturing technologies and characterization means. In addition to this, they can enable us to investigate the intrinsic properties of materials at the atomic- or molecular-length scale and probe new phenomena that are inaccessible in ensemble experiments. In this perspective, we start from a brief introduction on the manufacturing method of graphene-molecule-graphene single-molecule junctions (GMG-SMJs). Then, we make a description on the remarkable functions of GMG-SMJs, especially on the investigation of single-molecule charge transport and dynamics. Finally, we conclude by discussing the main challenges and future research directions of molecular electronics.

16.
Angew Chem Int Ed Engl ; 59(25): 9952-9956, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32017333

RESUMEN

New, biocompatible materials with favorable antibacterial activity are highly desirable. In this work, we develop a unique conjugated polymer featuring aggregation-induced emission (AIE) for reliable bacterial eradication. Thanks to the AIE and donor-π-acceptor structure, this polymer shows a high reactive oxygen species (ROS)-generation ability compared to a low-mass model compound and the common photosensitizer Chlorin E6. Moreover, the selective binding of pathogenic microorganisms over mammalian cells was found, demonstrating its biocompatibility. The effective growth inhibition of bacteria upon polymer treatment under light irradiation was validated in vitro and in vivo. Notably, the recovery from infection after treatment with our polymer is faster than that with cefalotin. Thus, this polymer holds great promise in fighting against bacteria-related infections in practical applications.


Asunto(s)
Infecciones Bacterianas/terapia , Fotoquimioterapia/métodos , Polímeros/uso terapéutico , Animales , Bacterias/efectos de los fármacos , Materiales Biocompatibles , Células Cultivadas , Clorofilidas , Células HeLa , Humanos , Pruebas de Sensibilidad Microbiana , Fármacos Fotosensibilizantes/uso terapéutico , Polímeros/síntesis química , Porfirinas/uso terapéutico , Especies Reactivas de Oxígeno
17.
Inorg Chem ; 58(21): 14377-14388, 2019 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-31625389

RESUMEN

The synthesis, crystal structure, and photophysics of a series of neutral cyclometalated iridium(III) complexes bearing substituted N-heterocyclic carbene (NHC) ancillary ligands ((C∧N)2Ir(R-NHC), where C∧N and NHC refer to the cyclometalating ligand benzo[h]quinoline and 1-phenylbenzimidazole, respectively) are reported. The NHC ligands were substituted with electron-withdrawing or -donating groups on C4' of the phenyl ring (R = NO2 (Ir1), CN (Ir2), H (Ir3), OCH3 (Ir4), N(CH3)2 (Ir5)) or C5 of the benzimidazole ring (R = NO2 (Ir6), N(CH3)2 (Ir7)). The configuration of Ir1 was confirmed by a single-crystal X-ray diffraction analysis. The ground- and excited-state properties of Ir1-Ir7 were investigated by both spectroscopic methods and time-dependent density functional theory (TDDFT) calculations. All complexes possessed moderately strong structureless absorption bands at ca. 440 nm that originated from the C∧N ligand based 1π,π*/1CT (charge transfer)/1d,d transitions and very weak spin-forbidden 3MLCT (metal-to-ligand charge transfer)/3LLCT (ligand-to-ligand charge transfer) transitions beyond 500 nm. Electron-withdrawing substituents caused a slight blue shift of the 1π,π*/1CT/1d,d band, while electron-donating substituents induced a red shift of this band in comparison to the unsubstituted complex Ir3. Except for the weakly emissive nitro-substituted complexes Ir1 and Ir6 that had much shorter lifetimes (≤160 ns), the other complexes are highly emissive in organic solutions with microsecond lifetimes at ca. 540-550 nm at room temperature, with the emitting states being predominantly assigned to 3π,π*/3MLCT states. Although the effect of the substituents on the emission energy was insignificant, the effects on the emission quantum yields and lifetimes were drastic. All complexes also exhibited broad triplet excited-state absorption at 460-700 nm with similar spectral features, indicating the similar parentage of the lowest triplet excited states. The highly emissive Ir2 was used as a dopant for organic light-emitting diode (OLED) fabrication. The device displayed a yellow emission with a maximum current efficiency (ηc) of 71.29 cd A-1, a maximum luminance (Lmax) of 32747 cd m-2, and a maximum external quantum efficiency (EQE) of 20.6%. These results suggest the potential of utilizing this type of neutral Ir(III) complex as an efficient yellow phosphorescent emitter.

18.
Nano Lett ; 18(7): 4200-4205, 2018 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-29911870

RESUMEN

Through-bond conjugated molecules are the major frameworks for traditional molecular wires, while through-space conjugated units are rarely utilized and studied although they have shown unique conducting potential. Herein, we present novel single-molecule wires built on through-space conjugated hexaphenylbenzene. Their conductance, measured by the scanning tunneling microscopy based break-junction technique, increases with the improvement of through-space conjugation and finally reaches a remarkable value (12.28 nS) which greatly exceeds that of conventional through-bond conjugated counterpart (2.45 nS). The multichannel conducting model by integrating through-space and through-bond conjugations could be a promising strategy for the further design of robust single-molecule wires with advanced conductance and stability.

19.
Chemistry ; 24(62): 16603-16608, 2018 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-30178898

RESUMEN

The development of novel photosensitizers with aggregation-induced emission (AIE) characteristics has aroused tremendous interest, because it could combine efficient bioimaging with precise photodynamic therapy, which would thus dramatically promote applications in biomedical treatment. Among various AIE luminogens (AIEgens), heterocycle-containing molecules are highly promising for this usage because of their high photostability and tunable electronic properties. In this work, a pyrazine-containing AIEgen with a dicyanopyrazine moiety as an electron acceptor and a triphenylamine unit as an electron donor was chosen for study. The V-shaped donor-π-acceptor-π-donor structure of the AIEgen endowed its nanoparticles with excellent nonlinear optical properties for two-photon cell imaging under near-infrared laser excitation. Also, under the same excitation, the nanoparticles could produce reactive oxygen species and further kill the cells efficiently and accurately. The present work thus presents a pyrazine-containing AIEgen as a new photosensitizer for imaging-guided two-photon photodynamic therapy and gives more opportunities for deep-tissue treatment of cancer in future research.


Asunto(s)
Fármacos Fotosensibilizantes/química , Pirazinas/química , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Dispersión Dinámica de Luz , Colorantes Fluorescentes/química , Células HeLa , Humanos , Rayos Infrarrojos , Microscopía Electrónica de Transmisión , Microscopía de Fluorescencia por Excitación Multifotónica , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Fotoquimioterapia , Fotones , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Pirazinas/farmacología , Pirazinas/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Dióxido de Silicio/química
20.
Macromol Rapid Commun ; 39(11): e1800098, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29682849

RESUMEN

Click polymerization, a powerful synthetic technique to construct polymers with unique structures and advanced functions, is of crucial importance in the areas of polymer and material sciences. A variety of click polymerizations such as azide-alkyne, thiol-yne, amino-yne, and hydroxyl-yne reactions have been established, wherein the catalytic systems play an indispensable role in realizing these highly practical reactions based on triple-bond building blocks, as they directly influence the efficiencies of the click polymerizations and the performances of the resultant polymers. The vital employment of catalysts is reviewed and their developments from innovative discoveries to the eminent position are outlined. Moreover, the challenges and perspectives in this area are also briefly discussed.


Asunto(s)
Polímeros/química , Alquinos/química , Azidas/química , Catálisis , Química Clic , Luz , Metales/química , Microondas , Polimerizacion , Compuestos de Sulfhidrilo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA