Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 22(3): 358-369, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33432230

RESUMEN

CD8+ T cell exhaustion dampens antitumor immunity. Although several transcription factors have been identified that regulate T cell exhaustion, the molecular mechanisms by which CD8+ T cells are triggered to enter an exhausted state remain unclear. Here, we show that interleukin-2 (IL-2) acts as an environmental cue to induce CD8+ T cell exhaustion within tumor microenvironments. We find that a continuously high level of IL-2 leads to the persistent activation of STAT5 in CD8+ T cells, which in turn induces strong expression of tryptophan hydroxylase 1, thus catalyzing the conversion to tryptophan to 5-hydroxytryptophan (5-HTP). 5-HTP subsequently activates AhR nuclear translocation, causing a coordinated upregulation of inhibitory receptors and downregulation of cytokine and effector-molecule production, thereby rendering T cells dysfunctional in the tumor microenvironment. This molecular pathway is not only present in mouse tumor models but is also observed in people with cancer, identifying IL-2 as a novel inducer of T cell exhaustion.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Linfocitos T CD8-positivos/efectos de los fármacos , Interleucina-2/metabolismo , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Neoplasias/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Microambiente Tumoral , 5-Hidroxitriptófano/metabolismo , Animales , Anticuerpos Neutralizantes/farmacología , Antineoplásicos/farmacología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/deficiencia , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Células HEK293 , Humanos , Interleucina-2/antagonistas & inhibidores , Interleucina-2/genética , Células Jurkat , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Células MCF-7 , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/inmunología , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Células 3T3 NIH , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Neoplasias/patología , Receptores de Hidrocarburo de Aril/deficiencia , Receptores de Hidrocarburo de Aril/genética , Transducción de Señal , Triptófano Hidroxilasa/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Immunity ; 46(3): 446-456, 2017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28314593

RESUMEN

Zika virus (ZIKV) has become a public health threat due to its global transmission and link to severe congenital disorders. The host immune responses to ZIKV infection have not been fully elucidated, and effective therapeutics are not currently available. Herein, we demonstrated that cholesterol-25-hydroxylase (CH25H) was induced in response to ZIKV infection and that its enzymatic product, 25-hydroxycholesterol (25HC), was a critical mediator of host protection against ZIKV. Synthetic 25HC addition inhibited ZIKV infection in vitro by blocking viral entry, and treatment with 25HC reduced viremia and conferred protection against ZIKV in mice and rhesus macaques. 25HC suppressed ZIKV infection and reduced tissue damage in human cortical organoids and the embryonic brain of the ZIKV-induced mouse microcephaly model. Our findings highlight the protective role of CH25H during ZIKV infection and the potential use of 25HC as a natural antiviral agent to combat ZIKV infection and prevent ZIKV-associated outcomes, such as microcephaly.


Asunto(s)
Antivirales/farmacología , Hidroxicolesteroles/farmacología , Microcefalia/virología , Infección por el Virus Zika/complicaciones , Animales , Encéfalo/efectos de los fármacos , Modelos Animales de Enfermedad , Técnica del Anticuerpo Fluorescente , Humanos , Macaca mulatta , Ratones , Microscopía Confocal , Internalización del Virus/efectos de los fármacos , Virus Zika/efectos de los fármacos , Virus Zika/fisiología
3.
Nature ; 570(7761): 349-353, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31217597

RESUMEN

The photovoltaic effect in traditional p-n junctions-where a p-type material (with an excess of holes) abuts an n-type material (with an excess of electrons)-involves the light-induced creation of electron-hole pairs and their subsequent separation, generating a current. This photovoltaic effect is particularly important for environmentally benign energy harvesting, and its efficiency has been increased dramatically, almost reaching the theoretical limit1. Further progress is anticipated by making use of the bulk photovoltaic effect (BPVE)2, which does not require a junction and occurs only in crystals with broken inversion symmetry3. However, the practical implementation of the BPVE is hampered by its low efficiency in existing materials4-10. Semiconductors with reduced dimensionality2 or a smaller bandgap4,5 have been suggested to be more efficient. Transition-metal dichalcogenides (TMDs) are exemplary small-bandgap, two-dimensional semiconductors11,12 in which various effects have been observed by breaking the inversion symmetry inherent in their bulk crystals13-15, but the BPVE has not been investigated. Here we report the discovery of the BPVE in devices based on tungsten disulfide, a member of the TMD family. We find that systematically reducing the crystal symmetry beyond mere broken inversion symmetry-moving from a two-dimensional monolayer to a nanotube with polar properties-greatly enhances the BPVE. The photocurrent density thus generated is orders of magnitude larger than that of other BPVE materials. Our findings highlight not only the potential of TMD-based nanomaterials, but also more generally the importance of crystal symmetry reduction in enhancing the efficiency of converting solar to electric power.

4.
Rev Neurol (Paris) ; 180(7): 642-649, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38553271

RESUMEN

OBJECTIVES: Some studies show that high circulating cystatin C (CysC) may predict cardiovascular events and death after ischemic stroke onset. However, the association between serum CysC and outcome in ischemic stroke patients remains contradictory. We sought to assess the association between a specific stroke subgroup, brainstem infarction (BSI) and serum CysC. MATERIALS AND METHODS: A total of 324 acute BSI patients were included in the study. Serum CysC was used to calculate estimated glomerular filtration rate (eGFRCysC) at baseline. Modified Rankin scale score ((mRS) ≥3) six months after acute BSI indicates poor functional outcome. Patients were categorized into two groups according to mRS and eGFRCysC. Logistic regression analyses were performed to determine independent risk factors. RESULTS: Lower eGFRCysC was associated with hemoglobin A1c (HbA1c). This risk remained statistically significant after controlling for age, hypertension, initial National Institutes of Health Stroke Scale (NIHSS) score, HbA1c, fibrinogen and homocysteine. The serum eGFRCysC levels were significantly lower in the poor functional outcome group than the good functional outcome group (P<0.001). Multivariate logistic regression analyses showed that eGFRCysC level was significantly lower in the poor outcome group after adjusting for age, previous infarctions, initial NIHSS score, and HbA1c. CONCLUSIONS: Lower eGFRCysC levels were strongly associated with poor functional outcome of acute BSI patients with a higher HbA1c level. Lower eGFRCysC may be a more helpful serologic biomarker for the prediction of prognosis in BSI.


Asunto(s)
Biomarcadores , Infartos del Tronco Encefálico , Cistatina C , Tasa de Filtración Glomerular , Humanos , Cistatina C/sangre , Masculino , Femenino , Pronóstico , Anciano , Persona de Mediana Edad , Tasa de Filtración Glomerular/fisiología , Infartos del Tronco Encefálico/sangre , Infartos del Tronco Encefálico/diagnóstico , Biomarcadores/sangre , Anciano de 80 o más Años , Factores de Riesgo
5.
Br J Cancer ; 128(4): 492-504, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36396822

RESUMEN

Given that plenty of clinical findings and reviews have already explained in detail on the progression of CD38 in multiple myeloma and haematological system tumours, here we no longer give unnecessary discussion on the above progression. Though therapeutic antibodies have been regarded as a greatest breakthrough in multiple myeloma immunotherapies due to the durable anti-tumour responses in the clinic, but the role of CD38 in the immunologic regulation and evasion of non-hematopoietic solid tumours are just initiated and controversial. Therefore, we will focus on the bio-function of CD38 enzymatic substrates or metabolites in the variety of non-hematopoietic malignancies and the potential therapeutic value of targeting the CD38-NAD+ or CD38-cADPR/ADPR signal axis. Though limited, we review some ongoing researches and clinical trials on therapeutic approaches in solid tumour as well.


Asunto(s)
Neoplasias Hematológicas , Mieloma Múltiple , Humanos , ADP-Ribosil Ciclasa 1 , Microambiente Tumoral , Inmunoterapia
6.
Bioinformatics ; 36(3): 819-827, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31504185

RESUMEN

MOTIVATION: Many methods have been developed to estimate immune cell composition from tissue transcriptomes. One common characteristic of these methods is that they are trained using a set of general immune cell transcriptomes that ignores tissue specificities. However, as immune cells are localized in different tissues, they may have distinct expression profiles. Hence, calculations that use general signature matrices may hinder the deconvolution accuracy. RESULTS: This study used single cell RNA-sequencing (scRNA-Seq) data from different mouse tissues instead of general signature expression values to generate tissue-specific signature gene matrices that are used as the input of the deconvolution model. First, the transcriptome of immune cells in each tissue was extracted from scRNA-Seq data and used to construct the entire expression matrix of tissue immune cells. Then, after comparing different gene selection strategies, the expressions of 162 seq-ImmuCC derived signature genes in tissue immune cell scRNA-Seq data were regarded as the tissue specific signature matrices. Finally, a modest improvement in performance was observed in multiple tissues that refer to a traditional general signature matrix in the deconvolution model. With the fast accumulation of scRNA-Seq data, the introduction of these data into an estimation of immune cell compositions for different tissues will open a new window for avoiding tissue bias for immune cell expression. AVAILABILITY AND IMPLEMENTATION: The signature matrices were available at https://github.com/wuaipinglab/ImmuCC/tree/master/tissue_immucc/SignatureMatrix). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Animales , Secuencia de Bases , Ratones , Análisis de Secuencia de ARN , Análisis de la Célula Individual
7.
J Immunol ; 203(4): 1012-1020, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31308089

RESUMEN

The evolutionarily conserved F-box family of proteins are well known for their role as the key component of SKP1-Cullin1-F-box (SCF) E3 ligase in controlling cell cycle, cell proliferation and cell death, carcinogenesis, and cancer metastasis. However, thus far, there is only limited investigation on their involvement in antiviral immunity. In contrast to the canonical function of FBXO6 associated with SCF E3 ligase complex, we report, in this study, that FBXO6 can also potently regulate the activation of IFN-I signaling during host response to viral infection by targeting the key transcription factor IFN-regulatory factor 3 (IRF3) for accelerated degradation independent of SCF in human embryonic kidney cells (HEK293T) and human lung cancer epithelial cells (A549). Structure and function delineation has further revealed that FBXO6 interacts with IAD domain of IRF3 through its FBA region to induce ubiquitination and degradation of IRF3 without the involvement of SCF. Thus, our studies have identified a general but, to our knowledge, previously unrecognized role and a novel noncanonical mechanism of FBXO6 in modulating IFN-I-mediated antiviral immune responses, which may protect the host from immunopathology of overreactive and harmful IFN-I production.


Asunto(s)
Proteínas Ligasas SKP Cullina F-box/inmunología , Virosis/inmunología , Línea Celular , Humanos , Interferón Tipo I/inmunología
8.
Biochem Biophys Res Commun ; 522(4): 862-868, 2020 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-31806372

RESUMEN

Ebola virus (EBOV), pathogen of Ebola hemorrhagic fever (EHF), is an enveloped filamental RNA virus. Recently, the EHF crisis occurred in the Democratic Republic of the Congo again highlights the urgency for its clinical treatments. However, no Food and Drug Administration (FDA)-approved therapeutics are currently available. Drug repurposing screening is a time- and cost-effective approach for identifying anti-EBOV therapeutics. Here, by combinatorial screening using pseudovirion and minigenome replicon systems we have identified several FDA-approved drugs with significant anti-EBOV activities. These potential candidates include azithromycin, clomiphene, chloroquine, digitoxin, epigallocatechin-gallate, fluvastatin, tetrandrine and tamoxifen. Mechanistic studies revealed that fluvastatin inhibited EBOV pseudovirion entry by blocking the pathway of mevalonate biosynthesis, while the inhibitory effect of azithromycin on EBOV maybe due to its intrinsic cationic amphiphilic structure altering the homeostasis of later endosomal vesicle similar as tamoxifen. Moreover, based on structure and pathway analyses, the anti-EBOV activity has been extended to other family members of statins, such as simvastatin, and multiple other cardiac glycoside drugs, some of which exhibited even stronger activities. More importantly, in searching for drug interaction, we found various synergy between several anti-EBOV drug combinations, showing substantial and powerful synergistic against EBOV infection. In conclusion, our work illustrates a successful and productive approach to identify new mechanisms and targets for treating EBOV infection by combinatorial screening of FDA-approved drugs.


Asunto(s)
Antivirales/análisis , Antivirales/farmacología , Técnicas Químicas Combinatorias , Aprobación de Drogas , Evaluación Preclínica de Medicamentos , Ebolavirus/efectos de los fármacos , Azitromicina/farmacología , Glicósidos Cardíacos/farmacología , Línea Celular , Colesterol/biosíntesis , Sinergismo Farmacológico , Ebolavirus/fisiología , Fluvastatina/farmacología , Humanos , Ácido Mevalónico/metabolismo , Modelos Biológicos , Tensoactivos/química , Virión/efectos de los fármacos , Virión/fisiología , Internalización del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos
9.
J Immunol ; 198(2): 808-819, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27956528

RESUMEN

The F-box proteins were originally identified as the key component of SKP1-Cullin1-F-box E3 ligase complexes that control the stability of their specific downstream substrates essential for cell growth and survival. However, the involvement of these proteins in type I IFN (IFN-I) signaling during innate immunity has not been investigated. In this study we report that the F-box protein FBXO17 negatively regulates IFN-I signaling triggered by double-strand DNA, RNA, or viral infection. We found that FBXO17 specifically interacts with IFN regulatory factor 3 (IRF3) and decreases its dimerization and nuclear translocation. The decrease of IRF3 dimerization and nuclear translocation is due to the recruitment of protein phosphatase 2 (PP2A) mediated by FBXO17, resulting in IRF3 dephosphorylation. Interestingly, PP2A recruitment does not require the F-box domain but instead the F-box associated region of the protein; thus, the recruitment is independent of the canonical function of the SKP1-Cullin1-F-box family of E3 ligase. Together, our studies identify a previously unreported role of FBXO17 in regulating IFN-I signaling and further demonstrate a novel mechanism for IRF3 deactivation by F-box protein-mediated recruitment of PP2A.


Asunto(s)
Proteínas F-Box/inmunología , Inmunidad Innata/inmunología , Factor 3 Regulador del Interferón/inmunología , Interferón Tipo I/inmunología , Proteína Fosfatasa 2/inmunología , Línea Celular , Regulación hacia Abajo , Ensayo de Inmunoadsorción Enzimática , Proteínas F-Box/metabolismo , Técnicas de Inactivación de Genes , Humanos , Immunoblotting , Inmunoprecipitación , Factor 3 Regulador del Interferón/metabolismo , Interferón Tipo I/metabolismo , Proteína Fosfatasa 2/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/inmunología
10.
J Dairy Sci ; 102(8): 7226-7236, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31202648

RESUMEN

The mammalian Y chromosome gene families in the ampliconic region are expressed predominantly or exclusively in the testis, and their copy number variations (CNV) are significantly associated with male reproductive traits, suggesting they have important roles in spermatogenesis and testicular development. ZNF280AY (zinc finger protein 280A, Y-linked) is a member of the zinc finger protein family and has been identified as a bovid-specific Y-chromosome gene. The current study applied a reliable quantitative real-time PCR method to estimate the CNV of ZNF280AY in 715 bulls across 21 cattle breeds and to further investigate the association of the CNV of ZNF280AY with bull reproductive traits and ZNF280AY mRNA expression levels in adult testis. The results revealed that the median copy number of ZNF280AY was 47, and the copy number varied from 11 to 154, showing significant CNV between and within the investigated cattle breeds. In addition, all 715 bulls were classified into Y1, Y2, and Y3 lineage groups based on a rapid genotyping method described previously. Pairwise comparisons indicated that bulls belonging to the Y1 lineage had a significantly lower median copy number (40) than bulls belonging to the Y2 (52) and Y3 lineages (57). Association analysis revealed that the CNV of ZNF280AY was correlated negatively with the percentage of normal sperm and sperm concentration in Holstein bulls, whereas no significant correlation was observed with ejaculation volume, total sperm count, sperm motility, postthaw motility (PTM), and scrotal circumference in Holstein and Simmental bulls. Furthermore, no correlation was observed between ZNF280AY copy number and ZNF280AY mRNA expression levels in the testis. The current study suggests that the CNV of the ZNF280AY gene family is associated with male reproductive traits and may serve as a valuable marker for early bull fertility selection in Holstein breeding programs.


Asunto(s)
Bovinos/genética , Variaciones en el Número de Copia de ADN , Fertilidad/genética , Regulación de la Expresión Génica , Genes Ligados a Y/genética , Reproducción/genética , Cromosoma Y/genética , Animales , Cruzamiento , Bovinos/fisiología , Marcadores Genéticos/genética , Genotipo , Masculino , Especificidad de Órganos , Fenotipo , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Especificidad de la Especie , Recuento de Espermatozoides/veterinaria , Motilidad Espermática/genética , Espermatogénesis/genética , Testículo/fisiología , Dedos de Zinc/genética
11.
Br Poult Sci ; 60(3): 323-329, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30784300

RESUMEN

1. The objective of this study was to reveal the role of chicken RB1 (Gallus gallus RB1, gRB1) in the proliferation of preadipocytes. 2. To measure gene expression of gRB1 in the proliferation of chicken preadipocyte, quantitative real-time PCR was used. The expression levels of gRB1 transiently increased during this process. 3. To detect the effect of gRB1 on the proliferation of chicken preadipocyte, MTT assay and cell-cycle analysis were performed. MTT assay showed that overexpression of gRB1 significantly suppressed (P < 0.05) the proliferation of chicken preadipocytes, and knockdown of gRB1 promoted the proliferation of chicken preadipocytes. Cell-cycle analysis showed that the proportion of preadipocytes in the G1 and G2 phases significantly increased (P < 0.05), and the proportion of preadipocytes in the S phase significantly decreased (P < .05) after up-regulation of the expression of gRB1. The proportion of preadipocytes in the S phase significantly increased (P < 0.05) after down-regulation of gRB1. 4. Quantitative real-time PCR was used to detect the effect of gRB1 on the expression of genes related to proliferation of chicken preadipocytes. Gene expression analysis showed that gRB1 knockdown promoted markers indicating proliferation of Ki-67 (MKi67) expression at 96 h (P < 0.05), and overexpression of gRB1 reduced MKi67 expression at 72 h (P < 0.05). 5. This study demonstrated that gRB1 inhibited preadipocyte proliferation at least in part by inhibiting the G1 to S phase transition.


Asunto(s)
Adipocitos/fisiología , Proteínas Aviares/genética , Proliferación Celular/genética , Pollos/fisiología , Factor de Transcripción E2F1/genética , Animales , Proteínas Aviares/metabolismo , Factor de Transcripción E2F1/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
12.
J Virol ; 91(5)2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28031371

RESUMEN

Influenza virus RNA-dependent RNA polymerase consists of three viral protein subunits: PA, PB1, and PB2. Protein-protein interactions (PPIs) of these subunits play pivotal roles in assembling the functional polymerase complex, which is essential for the replication and transcription of influenza virus RNA. Here we developed a highly specific and robust bimolecular luminescence complementation (BiLC) reporter system to facilitate the investigation of influenza virus polymerase complex formation. Furthermore, by combining computational modeling and the BiLC reporter assay, we identified several novel small-molecule compounds that selectively inhibited PB1-PB2 interaction. Function of one such lead compound was confirmed by its activity in suppressing influenza virus replication. In addition, our studies also revealed that PA plays a critical role in enhancing interactions between PB1 and PB2, which could be important in targeting sites for anti-influenza intervention. Collectively, these findings not only aid the development of novel inhibitors targeting the formation of influenza virus polymerase complex but also present a new tool to investigate the exquisite mechanism of PPIs. IMPORTANCE Formation of the functional influenza virus polymerase involves complex protein-protein interactions (PPIs) of PA, PB1, and PB2 subunits. In this work, we developed a novel BiLC assay system which is sensitive and specific to quantify both strong and weak PPIs between influenza virus polymerase subunits. More importantly, by combining in silico modeling and our BiLC assay, we identified a small molecule that can suppress influenza virus replication by disrupting the polymerase assembly. Thus, we developed an innovative method to investigate PPIs of multisubunit complexes effectively and to identify new molecules inhibiting influenza virus polymerase assembly.


Asunto(s)
Antivirales/farmacología , Virus de la Influenza A/enzimología , Proteínas no Estructurales Virales/metabolismo , Células A549 , Animales , Perros , Evaluación Preclínica de Medicamentos , Células HEK293 , Humanos , Virus de la Influenza A/efectos de los fármacos , Gripe Humana/tratamiento farmacológico , Gripe Humana/virología , Células de Riñón Canino Madin Darby , Mapeo de Interacción de Proteínas , Multimerización de Proteína/efectos de los fármacos
13.
Opt Express ; 26(9): 11577-11586, 2018 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-29716076

RESUMEN

Due to the abilities of manipulating the wavefront of light with well-controlled amplitude, and phase and polarization, optical metasurfaces are very suitable for optical holography, enabling applications with multiple functionalities and high data capacity. Here, we demonstrate encoding two- and three-dimensional full-color holographic images by an ultrathin metasurface hologram whose unit cells are subwavelength nanoslits with spatially varying orientations. We further show that it is possible to achieve full-color holographic multiplexing with such kind of geometric metasurfaces, realized by a synthetic spectrum holographic algorithm. Our results provide an efficient way to design multi-color optical display elements that are ready for fabrication.

14.
Nanotechnology ; 29(24): 245706, 2018 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-29595518

RESUMEN

By synthesizing nitrogen-doped graphene (NG) via a facile thermal annealing method, a fine control of the amount and location of doped nitrogen as well as the oxygen-containing functional groups is achieved with varying annealing temperature. The favorable magnetic properties have been achieved for N-doped rGO samples obtained at two temperatures of all NG samples, i.e., 500 °C and 900 °C with saturation magnetization of 0.63 emu g-1 and 0.67 emu g-1 at 2 K, respectively. This is attributed to the optimized competition of the N-doping and reduction process at 500 °C and the dominated reduction process at 900 °C. NG obtained at 300 °C affords the best overall absorbing performance: when the absorber thickness is 3.0 mm, the maximum absorption was -24.6 dB at 8.51 GHz, and the absorption bandwidth was 4.89 GHz (7.55-12.44 GHz) below -10 dB. It owes its large absorbing intensity to the good impedance match and significant dielectric loss. The broad absorption bandwidth benefits from local fluctuations of dielectric responses contributed by competing mechanisms. Despite the significant contribution from materials loss to the absorption, the one quarter-wavelength model is found to be responsible for the reflection loss peak positions. Of particular significance is that an appropriate set of electromagnetic parameters associated with reasonable reduction is readily accessible by convenient control of annealing temperature to modulate the microwave absorbing features of graphene. Thus, NG prepared by thermal annealing promises to be a highly efficient microwave absorbent.

15.
J Immunol ; 196(10): 4322-30, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-27045107

RESUMEN

Induction of type I IFN (IFN-I) is essential for host antiviral immune responses. However, IFN-I also plays divergent roles in antibacterial immunity, persistent viral infections, autoimmune diseases, and tumorigenesis. IFN regulatory factor 3 (IRF3) is the master transcription factor that controls IFN-I production via phosphorylation-dependent dimerization in most cell types in response to viral infections and various innate stimuli by pathogen-associated molecular patterns (PAMPs). To monitor the dynamic process of IRF3 activation, we developed a novel IRF3 dimerization reporter based on bimolecular luminescence complementation (BiLC) techniques, termed the IRF3-BiLC reporter. Robust induction of luciferase activity of the IRF3-BiLC reporter was observed upon viral infection and PAMP stimulation with a broad dynamic range. Knockout of TANK-binding kinase 1, the critical upstream kinase of IRF3, as well as the mutation of serine 386, the essential phosphorylation site of IRF3, completely abolished the luciferase activity of IRF3-BiLC reporter, confirming the authenticity of IRF3 activation. Taken together, these results demonstrated that the IRF3-BiLC reporter is a highly specific, reliable, and sensitive system to measure IRF3 activity. Using this reporter system, we further observed that the temporal pattern and magnitude of IRF3 activation induced by various PAMPs are highly complex with distinct cell type-specific characteristics, and IRF3 dimerization is a direct regulatory node for IFN-α/ß receptor-mediated feed-forward regulation and crosstalk with other pathways. Therefore, the IRF3-BiLC reporter has multiple potential applications, including mechanistic studies as well as the identification of novel compounds that can modulate IRF3 activation.


Asunto(s)
Factor 3 Regulador del Interferón/metabolismo , Interferón Tipo I/inmunología , Proteínas Serina-Treonina Quinasas/genética , Receptor de Interferón alfa y beta/metabolismo , Transducción de Señal , Sistemas CRISPR-Cas , Línea Celular , Regulación hacia Abajo , Genes Reporteros , Células HEK293 , Humanos , FN-kappa B/metabolismo , Moléculas de Patrón Molecular Asociado a Patógenos/inmunología , Fosforilación , Unión Proteica , Multimerización de Proteína , Receptor de Interferón alfa y beta/genética , Virosis/inmunología
16.
Appl Opt ; 57(4): 924-930, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29400768

RESUMEN

The full-field stress distribution of a two-dimensional plain fabric was mapped using micro Raman spectroscopy (MRS) through a novel yarn push-out test, simulating a quasi-static projectile impact on the fabric. The stress-strain relationship for a single yarn was established using a digital image correlation method in a single-yarn tensile test. The relationship between Raman peak shift and aramid Kevlar 49 yarn stress was established using MRS in a single-yarn tensile test. An out-of-plane loading test was conducted on an aramid Kevlar 49 plain fabric, and the yarn stress was measured using MRS. From the full-field fabric stress distribution, it can be observed that there is a cross-shaped distribution of high yarn stress; this result would be helpful in further studies on load transfer on a fabric during a projectile impact.

17.
Zhonghua Yi Xue Za Zhi ; 98(22): 1771-1774, 2018 Jun 12.
Artículo en Zh | MEDLINE | ID: mdl-29925157

RESUMEN

Objective: To investigate the value of stereotactic biopsy in the accurate diagnosis of lesions in the brain stem and deep brain. Methods: A total of 29 consecutive patients who underwent stereotactic biopsy of brainstem and deep brain lesions between May 2012 and January 2018 were retrospectively reviewed. The Cosman-Roberts-Wells (CRW) stereotactic frame was installed under local anesthesia. Thin-layer CT and MRI scanning were performed. Target coordinates were calculated by inputting CT-MRI data into the radionics surgical planning system. The individualized puncture path was designed according to the location of the lesions and the characteristics of the image. Target distributions were as follows: 12 cases of midbrain or pons, 2 cases of internal capsule, 3 cases of thalamus, 12 cases of basal ganglia. The biopsy samples were used for further pathological and/or genetic diagnosis. Results: Twenty-eight of the 29 cases (96.6%) were diagnosed accurately by histopathology and genomic examination following stereotactic biopsy. Pathological results were as follows: 8 cases of lymphoma, 7 cases of glioma, 4 cases of demyelination, 2 cases of germ cell tumor, 2 cases of metastatic tumor, 1 cases of cerebral sparganosis, 1 case of tuberculous granuloma, 1 case of hereditary prion disease, 1 case of glial hyperplasia, 1 case of leukemia. The accurate diagnosis of one case required a combination of histopathology and genomic examination. Undefined diagnosis was still made in 1 cases (3.45%) after biopsy. After biopsy, there were 2 cases (6.9%) with symptomatic slight hemorrhage, 1 case (3.45%) with symptomatic severe hemorrhage, and 1 cass (3.45%) with permanent neurological dysfunction. No one died because of surgery or surgical complications. Conclusions: Stereotactic biopsy is fast, safe and minimally invasive. It is an ideal strategy for accurate diagnosis of lesions in brain stem and deep brain.


Asunto(s)
Encéfalo , Biopsia , Neoplasias Encefálicas , Tronco Encefálico , Humanos , Estudios Retrospectivos , Técnicas Estereotáxicas
18.
Immunity ; 28(6): 870-80, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18513999

RESUMEN

Previous studies suggest that thymus produces a homogenous population of natural regulatory T (Treg) cells that express a transcriptional factor FOXP3 and control autoimmunity through a cell-contact-dependent mechanism. We found two subsets of FOXP3+ natural Treg cells defined by the expression of the costimulatory molecule ICOS in the human thymus and periphery. Whereas the ICOS+FOXP3+ Treg cells used interleukin-10 to suppress dendritic cell function and transforming growth factor (TGF)-beta to suppress T cell function, the ICOS-FOXP3+ Treg cells used TGF-beta only. The survival and proliferation of the two subsets of Treg cells were differentially regulated by signaling through ICOS or CD28, respectively. We suggest that the selection of natural Treg cells in thymus is coupled with Treg cell differentiation into two subsets imprinted with different cytokine expression potentials and use both cell-contact-dependent and independent mechanisms for immunosuppression in periphery.


Asunto(s)
Antígenos de Diferenciación de Linfocitos T/metabolismo , Factores de Transcripción Forkhead/metabolismo , Subgrupos de Linfocitos T/inmunología , Linfocitos T Reguladores/inmunología , Timo/inmunología , Antígenos de Diferenciación de Linfocitos T/inmunología , Antígenos CD28/metabolismo , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Humanos , Proteína Coestimuladora de Linfocitos T Inducibles , Interleucina-10/inmunología , Interleucina-10/metabolismo , Transducción de Señal , Subgrupos de Linfocitos T/citología , Subgrupos de Linfocitos T/metabolismo , Linfocitos T Reguladores/citología , Linfocitos T Reguladores/metabolismo , Timo/citología , Timo/metabolismo , Factor de Crecimiento Transformador beta/inmunología , Factor de Crecimiento Transformador beta/metabolismo
19.
J Virol ; 90(6): 2938-47, 2015 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-26719244

RESUMEN

UNLABELLED: Influenza virus mRNA synthesis by the RNA-dependent RNA polymerase involves binding and cleavage of capped cellular mRNA by the PB2 and PA subunits, respectively, and extension of viral mRNA by PB1. However, the mechanism for such a dynamic process is unclear. Using high-throughput mutagenesis and sequencing analysis, we have not only generated a comprehensive functional map for the microdomains of individual subunits but also have revealed the PA linker to be critical for polymerase activity. This PA linker binds to PB1 and also forms ionic interactions with the PA C-terminal channel. Nearly all mutants with five-amino-acid insertions in the linker were nonviable. Our model further suggests that the PA linker plays an important role in the conformational changes that occur between stages that favor capped mRNA binding and cleavage and those associated with viral mRNA synthesis. IMPORTANCE: The RNA-dependent RNA polymerase of influenza virus consists of the PB1, PB2, and PA subunits. By combining genome-wide mutagenesis analysis with the recently discovered crystal structure of the influenza polymerase heterotrimer, we generated a comprehensive functional map of the entire influenza polymerase complex. We identified the microdomains of individual subunits, including the catalytic domains, the interaction interfaces between subunits, and nine linkers interconnecting different domains. Interestingly, we found that mutants with five-amino-acid insertions in individual linkers were nonviable, suggesting the critical roles these linkers play in coordinating spatial relationships between the subunits. We further identified an extended PA linker that binds to PB1 and also forms ionic interactions with the PA C-terminal channel.


Asunto(s)
Virus de la Influenza A/enzimología , ARN Viral/biosíntesis , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas Virales/metabolismo , Animales , Línea Celular , Análisis Mutacional de ADN , Humanos , Virus de la Influenza A/fisiología , Estabilidad del ARN , ARN Mensajero/metabolismo , ARN Polimerasa Dependiente del ARN/genética , Proteínas Virales/genética
20.
Opt Lett ; 41(1): 60-3, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26696158

RESUMEN

Spoof surface plasmons derive their properties from structure resonance rather than from electronic resonance, enabling an extremely high degree of freedom for tuning and modulating different resonances. Here, a composite resonator based on multiscale textured metal surface of different grooves is presented, and spoof localized surface plasmons (LSPs) are shown to emerge and interact coherently. Each band of the spoof LSPs resembles those generated by the homogenously textured surface with the corresponding groove. By adjusting the geometry and filling medium of each substructure in the composite system, we find that the multipole resonant modes sustained by one substructure can couple with those in the other, giving rise to multi-band Fano resonances. Such multiple-Fano resonance structures are spatially more compact while spectrally more comprehensive than usual spoof structures. They can be used for unique resonant devices such as microwave antennas and metasurfaces.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA