Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Virol ; 98(5): e0001624, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38563732

RESUMEN

Tumor necrosis factor receptor-associated factor family member-associated NF-κB activator-binding kinase 1 (TBK1) plays a key role in the induction of the type 1 interferon (IFN-I) response, which is an important component of innate antiviral defense. Viruses target calcium (Ca2+) signaling networks, which participate in the regulation of the viral life cycle, as well as mediate the host antiviral response. Although many studies have focused on the role of Ca2+ signaling in the regulation of IFN-I, the relationship between Ca2+ and TBK1 in different infection models requires further elucidation. Here, we examined the effects of the Newcastle disease virus (NDV)-induced increase in intracellular Ca2+ levels on the suppression of host antiviral responses. We demonstrated that intracellular Ca2+ increased significantly during NDV infection, leading to impaired IFN-I production and antiviral immunity through the activation of calcineurin (CaN). Depletion of Ca²+ was found to lead to a significant increase in virus-induced IFN-I production resulting in the inhibition of viral replication. Mechanistically, the accumulation of Ca2+ in response to viral infection increases the phosphatase activity of CaN, which in turn dephosphorylates and inactivates TBK1 in a Ca2+-dependent manner. Furthermore, the inhibition of CaN on viral replication was counteracted in TBK1 knockout cells. Together, our data demonstrate that NDV hijacks Ca2+ signaling networks to negatively regulate innate immunity via the CaN-TBK1 signaling axis. Thus, our findings not only identify the mechanism by which viruses exploit Ca2+ signaling to evade the host antiviral response but also, more importantly, highlight the potential role of Ca2+ homeostasis in the viral innate immune response.IMPORTANCEViral infections disrupt intracellular Ca2+ homeostasis, which affects the regulation of various host processes to create conditions that are conducive for their own proliferation, including the host immune response. The mechanism by which viruses trigger TBK1 activation and IFN-I induction through viral pathogen-associated molecular patterns has been well defined. However, the effects of virus-mediated Ca2+ imbalance on the IFN-I pathway requires further elucidation, especially with respect to TBK1 activation. Herein, we report that NDV infection causes an increase in intracellular free Ca2+ that leads to activation of the serine/threonine phosphatase CaN, which subsequently dephosphorylates TBK1 and negatively regulates IFN-I production. Furthermore, depletion of Ca2+ or inhibition of CaN activity exerts antiviral effects by promoting the production of IFN-I and inhibiting viral replication. Thus, our results reveal the potential role of Ca2+ in the innate immune response to viruses and provide a theoretical reference for the treatment of viral infectious diseases.


Asunto(s)
Calcineurina , Calcio , Inmunidad Innata , Virus de la Enfermedad de Newcastle , Proteínas Serina-Treonina Quinasas , Replicación Viral , Animales , Humanos , Calcineurina/metabolismo , Calcio/metabolismo , Señalización del Calcio , Línea Celular , Células HEK293 , Interferón Tipo I/metabolismo , Interferón Tipo I/inmunología , Enfermedad de Newcastle/inmunología , Enfermedad de Newcastle/virología , Enfermedad de Newcastle/metabolismo , Virus de la Enfermedad de Newcastle/inmunología , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética
2.
J Virol ; 98(3): e0189723, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38411946

RESUMEN

Ferroptosis, a form of programmed cell death characterized by iron-dependent lipid peroxidation, has recently gained considerable attention in the field of cancer therapy. There is significant crosstalk between ferroptosis and several classical signaling pathways, such as the Hippo pathway, which suppresses abnormal growth and is frequently aberrant in tumor tissues. Yes-associated protein 1 (YAP), the core effector molecule of the Hippo pathway, is abnormally expressed and activated in a variety of malignant tumor tissues. We previously proved that the oncolytic Newcastle disease virus (NDV) activated ferroptosis to kill tumor cells. NDV has been used in tumor therapy; however, its oncolytic mechanism is not completely understood. In this study, we demonstrated that NDV exacerbated ferroptosis in tumor cells by inducing ubiquitin-mediated degradation of YAP at Lys90 through E3 ubiquitin ligase parkin (PRKN). Blocking YAP degradation suppressed NDV-induced ferroptosis by suppressing the expression of Zrt/Irt-like protein 14 (ZIP14), a metal ion transporter that regulates iron uptake. These findings demonstrate that NDV exacerbated ferroptosis in tumor cells by inducing YAP degradation. Our study provides new insights into the mechanism of NDV-induced ferroptosis and highlights the critical role that oncolytic viruses play in the treatment of drug-resistant cancers.IMPORTANCEThe oncolytic Newcastle disease virus (NDV) is being developed for use in cancer treatment; however, its oncolytic mechanism is still not completely understood. The Hippo pathway, which is a tumor suppressor pathway, is frequently dysregulated in tumor tissues due to aberrant yes-associated protein 1 (YAP) activation. In this study, we have demonstrated that NDV degrades YAP to induce ferroptosis and promote virus replication in tumor cells. Notably, NDV was found to induce ubiquitin-mediated degradation of YAP at Lys90 through E3 ubiquitin ligase parkin (PRKN). Our study reveals a new mechanism by which NDV induces ferroptosis and provides new insights into NDV as an oncolytic agent for cancer treatment.


Asunto(s)
Ferroptosis , Neoplasias , Virus de la Enfermedad de Newcastle , Viroterapia Oncolítica , Proteínas Señalizadoras YAP , Animales , Humanos , Proteínas Adaptadoras Transductoras de Señales , Línea Celular Tumoral , Hierro , Neoplasias/terapia , Virus Oncolíticos/fisiología , Factores de Transcripción/genética , Ubiquitina-Proteína Ligasas , Ubiquitinas
3.
J Virol ; 97(3): e0001623, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36794935

RESUMEN

Viruses require host cell metabolic reprogramming to satisfy their replication demands; however, the mechanism by which the Newcastle disease virus (NDV) remodels nucleotide metabolism to support self-replication remains unknown. In this study, we demonstrate that NDV relies on the oxidative pentose phosphate pathway (oxPPP) and the folate-mediated one-carbon metabolic pathway to support replication. In concert with [1,2-13C2] glucose metabolic flow, NDV used oxPPP to promote pentose phosphate synthesis and to increase antioxidant NADPH production. Metabolic flux experiments using [2,3,3-2H] serine revealed that NDV increased one-carbon (1C) unit synthesis flux through the mitochondrial 1C pathway. Interestingly, methylenetetrahydrofolate dehydrogenase (MTHFD2) was upregulated as a compensatory mechanism for insufficient serine availability. Unexpectedly, direct knockdown of enzymes in the one-carbon metabolic pathway, except for cytosolic MTHFD1, significantly inhibited NDV replication. Specific complementation rescue experiments on small interfering RNA (siRNA)-mediated knockdown further revealed that only a knockdown of MTHFD2 strongly restrained NDV replication and was rescued by formate and extracellular nucleotides. These findings indicated that NDV replication relies on MTHFD2 to maintain nucleotide availability. Notably, nuclear MTHFD2 expression was increased during NDV infection and could represent a pathway by which NDV steals nucleotides from the nucleus. Collectively, these data reveal that NDV replication is regulated by the c-Myc-mediated 1C metabolic pathway and that the mechanism of nucleotide synthesis for viral replication is regulated by MTHFD2. IMPORTANCE Newcastle disease virus (NDV) is a dominant vector for vaccine and gene therapy that accommodates foreign genes well but can only infect mammalian cells that have undergone cancerous transformation. Understanding the remodeling of nucleotide metabolic pathways in host cells by NDV proliferation provides a new perspective for the precise use of NDV as a vector or in antiviral research. In this study, we demonstrated that NDV replication is strictly dependent on pathways involved in redox homeostasis in the nucleotide synthesis pathway, including the oxPPP and the mitochondrial one-carbon pathway. Further investigation revealed the potential involvement of NDV replication-dependent nucleotide availability in promoting MTHFD2 nuclear localization. Our findings highlight the differential dependence of NDV on enzymes for one-carbon metabolism, and the unique mechanism of action of MTHFD2 in viral replication, thereby providing a novel target for antiviral or oncolytic virus therapy.


Asunto(s)
Metilenotetrahidrofolato Deshidrogenasa (NADP) , Enfermedad de Newcastle , Virus de la Enfermedad de Newcastle , Replicación Viral , Animales , Metilenotetrahidrofolato Deshidrogenasa (NADP)/genética , Metilenotetrahidrofolato Deshidrogenasa (NADP)/metabolismo , Enfermedad de Newcastle/enzimología , Enfermedad de Newcastle/fisiopatología , Enfermedad de Newcastle/virología , Virus de la Enfermedad de Newcastle/genética , Virus de la Enfermedad de Newcastle/metabolismo , Nucleótidos/metabolismo , Serina/metabolismo , Replicación Viral/genética , Línea Celular , Células A549 , Humanos , Mesocricetus , Técnicas de Silenciamiento del Gen , Transporte de Proteínas/genética , Mitocondrias/enzimología , Regulación hacia Arriba/fisiología
4.
J Virol ; 96(2): e0162921, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-34705566

RESUMEN

The Newcastle disease virus (NDV) matrix (M) protein is the pivotal element for viral assembly, budding, and proliferation. It traffics through the cellular nucleus but performs its primary function in the cytoplasm. To investigate the biological importance of M protein nuclear-cytoplasmic trafficking and the mechanism involved, the regulatory motif nuclear export signal (NES) and nuclear localization signal (NLS) were analyzed. Here, two types of combined NLSs and NESs were identified within the NDV-M protein. The Herts/33-type M protein was found to mediate efficient nuclear export and stable virus-like particle (VLP) release, while the LaSota-type M protein was retained mostly in the nuclei and showed retarded VLP production. Two critical residues, namely, 247 and 263, within the motif were identified and associated with nuclear export efficiency. We identified, for the first time, residue 247 as an important monoubiquitination site, of which its modification regulates the nuclear-cytoplasmic trafficking of NDV-M. Subsequently, mutant LaSota strains were rescued via reverse genetics, which contained either single or double amino acid substitutions that were similar to the M of Herts/33. The rescued LaSota (rLaSota) strains rLaSota-R247K, -S263R, and -double mutation (DM) showed about 2-fold higher hemagglutination (HA) titers and 10-fold higher 50% egg infective dose (EID50) titers than wild-type (wt) rLaSota. Furthermore, the mean death time (MDT) and intracerebral pathogenicity index (ICPI) values of those recombinant viruses were slightly higher than those of wt rLaSota probably due to their higher proliferation rates. Our findings contribute to a better understanding of the molecular mechanism of the replication and pathogenicity of NDV and even those of all other paramyxoviruses. This information is beneficial for the development of vaccines and therapies for paramyxoviruses. IMPORTANCE Newcastle disease virus (NDV) is a pathogen that is lethal to birds and causes heavy losses in the poultry industry worldwide. The World Organization for Animal Health (OIE) ranked Newcastle disease (ND) as the third most significant poultry disease and the eighth most important wildlife disease in the World Livestock Disease Atlas in 2011. The matrix (M) protein of NDV is very important for viral assembly and maturation. It is interesting that M proteins enter the cellular nucleus before performing their primary function in the cytoplasm. We found that NDV-M has a combined nuclear import and export signal. The ubiquitin modification of a lysine residue within this signal is critical for quick, efficient nuclear export and subsequent viral production. Our findings shed new light on viral replication and open up new possibilities for therapeutics against NDV and other paramyxoviruses; furthermore, we demonstrate a novel approach for improving paramyxovirus vaccines.


Asunto(s)
Núcleo Celular/metabolismo , Virus de la Enfermedad de Newcastle/fisiología , Virus de la Enfermedad de Newcastle/patogenicidad , Ubiquitinación , Proteínas de la Matriz Viral/metabolismo , Replicación Viral , Animales , Pollos , Citoplasma/metabolismo , Lisina , Modelos Moleculares , Mutación , Enfermedad de Newcastle/metabolismo , Enfermedad de Newcastle/virología , Virus de la Enfermedad de Newcastle/metabolismo , Señales de Exportación Nuclear , Señales de Localización Nuclear , Proteínas de la Matriz Viral/química , Proteínas de la Matriz Viral/genética , Virulencia , Liberación del Virus
5.
PLoS Pathog ; 17(2): e1008690, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33635931

RESUMEN

Cytoplasmic stress granules (SGs) are generally triggered by stress-induced translation arrest for storing mRNAs. Recently, it has been shown that SGs exert anti-viral functions due to their involvement in protein synthesis shut off and recruitment of innate immune signaling intermediates. The largest RNA viruses, coronaviruses, impose great threat to public safety and animal health; however, the significance of SGs in coronavirus infection is largely unknown. Infectious Bronchitis Virus (IBV) is the first identified coronavirus in 1930s and has been prevalent in poultry farm for many years. In this study, we provided evidence that IBV overcomes the host antiviral response by inhibiting SGs formation via the virus-encoded endoribonuclease nsp15. By immunofluorescence analysis, we observed that IBV infection not only did not trigger SGs formation in approximately 80% of the infected cells, but also impaired the formation of SGs triggered by heat shock, sodium arsenite, or NaCl stimuli. We further demonstrated that the intrinsic endoribonuclease activity of nsp15 was responsible for the interference of SGs formation. In fact, nsp15-defective recombinant IBV (rIBV-nsp15-H238A) greatly induced the formation of SGs, along with accumulation of dsRNA and activation of PKR, whereas wild type IBV failed to do so. Consequently, infection with rIBV-nsp15-H238A strongly triggered transcription of IFN-ß which in turn greatly affected rIBV-nsp15-H238A replication. Further analysis showed that SGs function as an antiviral hub, as demonstrated by the attenuated IRF3-IFN response and increased production of IBV in SG-defective cells. Additional evidence includes the aggregation of pattern recognition receptors (PRRs) and signaling intermediates to the IBV-induced SGs. Collectively, our data demonstrate that the endoribonuclease nsp15 of IBV interferes with the formation of antiviral hub SGs by regulating the accumulation of viral dsRNA and by antagonizing the activation of PKR, eventually ensuring productive virus replication. We further demonstrated that nsp15s from PEDV, TGEV, SARS-CoV, and SARS-CoV-2 harbor the conserved function to interfere with the formation of chemically-induced SGs. Thus, we speculate that coronaviruses employ similar nsp15-mediated mechanisms to antagonize the host anti-viral SGs formation to ensure efficient virus replication.


Asunto(s)
COVID-19/virología , Gránulos Citoplasmáticos/metabolismo , Endorribonucleasas/inmunología , Endorribonucleasas/metabolismo , SARS-CoV-2/fisiología , Proteínas no Estructurales Virales/inmunología , Proteínas no Estructurales Virales/metabolismo , COVID-19/metabolismo , Línea Celular , Coronavirus/inmunología , Gránulos Citoplasmáticos/inmunología , Gránulos Citoplasmáticos/virología , Humanos , Interferón beta/inmunología , Interferón beta/metabolismo , SARS-CoV-2/metabolismo , Transducción de Señal , Replicación Viral/fisiología
6.
Angew Chem Int Ed Engl ; 62(14): e202300085, 2023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-36772842

RESUMEN

Pathogenic microorganisms in the environment are a great threat to global human health. The development of disinfection method with rapid and effective antibacterial properties is urgently needed. In this study, a biomimetic silver binding peptide AgBP2 was introduced to develop a facile synthesis of biocompatible Ag2 S quantum dots (QDs). The AgBP2 capped Ag2 S QDs exhibited excellent fluorescent emission in the second near-infrared (NIR-II) window, with physical stability and photostability in the aqueous phase. Under 808 nm NIR laser irradiation, AgBP2-Ag2 S QDs can serve not only as a photothermal agent to realize NIR photothermal conversion but also as a photocatalyst to generate reactive oxygen species (ROS). The obtained AgBP2-Ag2 S QDs achieved a highly effective disinfection efficacy of 99.06 % against Escherichia coli within 25 min of NIR irradiation, which was ascribed to the synergistic effects of photogenerated ROS during photocatalysis and hyperthermia. Our work demonstrated a promising strategy for efficient bacterial disinfection.


Asunto(s)
Puntos Cuánticos , Humanos , Puntos Cuánticos/química , Desinfección , Especies Reactivas de Oxígeno , Agua/química , Péptidos/farmacología , Bacterias
7.
PLoS Pathog ; 16(6): e1008610, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32603377

RESUMEN

Newcastle disease virus (NDV), a member of the Paramyxoviridae family, can activate PKR/eIF2α signaling cascade to shutoff host and facilitate viral mRNA translation during infection, however, the mechanism remains unclear. In this study, we revealed that NDV infection up-regulated host cap-dependent translation machinery by activating PI3K/Akt/mTOR and p38 MAPK/Mnk1 pathways. In addition, NDV infection induced p38 MAPK/Mnk1 signaling participated 4E-BP1 hyperphosphorylation for efficient viral protein synthesis when mTOR signaling is inhibited. Furthermore, NDV NP protein was found to be important for selective cap-dependent translation of viral mRNAs through binding to eIF4E during NDV infection. Taken together, NDV infection activated multiple signaling pathways for selective viral protein synthesis in infected cells, via interaction between viral NP protein and host translation machinery. Our results may help to design novel targets for therapeutic intervention against NDV infection and to understand the NDV anti-oncolytic mechanism.


Asunto(s)
Proteínas Aviares , Factor 4E Eucariótico de Iniciación , Sistema de Señalización de MAP Quinasas , Virus de la Enfermedad de Newcastle , Nucleoproteínas , ARN Mensajero , ARN Viral , Proteínas Virales , Animales , Proteínas Aviares/genética , Proteínas Aviares/metabolismo , Embrión de Pollo , Pollos , Factor 4E Eucariótico de Iniciación/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Células HEK293 , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Virus de la Enfermedad de Newcastle/genética , Virus de la Enfermedad de Newcastle/metabolismo , Proteínas de la Nucleocápside , Nucleoproteínas/biosíntesis , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Biosíntesis de Proteínas , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Virales/biosíntesis , Proteínas Virales/genética , Proteínas Virales/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
8.
Foot Ankle Surg ; 28(2): 251-257, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33832815

RESUMEN

OBJECTIVE: The purpose of this study was to retrospectively evaluate patients who had open reduction, external fixation and bone cement implantation of open calcaneal fractures. METHODS: The records of 14 patients with open calcaneus fractures from January 2015 to January 2019 were reviewed retrospectively. Clinical evaluations consisting of AOFAS, MFS and EQ-5D VAS scores and radiological evaluations consisting of the height, width and length of the calcaneus as well as Bohler's and Gissane angle performed at 3 months, 1 year and the last follow-up postoperatively. Time to surgery, wound complications were recorded. RESULTS: Our study sample consisted of 9 males and 5 females with a mean age of 38.5 ± 9.8 years and a mean follow-up of 31.4 ± 7.7 months. The mean period from injury to surgery was 5.4 ± 1.9 days and the mean duration of hospitalization was 13.2 ± 4.5 days. The AOFAS, MFS and EQ-5D VAS scores were 92.5 ± 10.3, 84.1 ± 9.7 and 86.4 ± 15.1 respectively at the final follow-up. The Bohler's angle increased from (12.9 ± 3.1)° preoperatively to (28.5 ± 6.3)° at the final follow-up (P < 0.001), with the Gissane's angle from (104.5 ± 9.7)° to (116.4 ± 8.9)° (P < 0.001). One patients (7.1%) developed pin infections and one patient (7.1%) suffered from dorso-lateral hindfoot hypoaesthesia. There was complete fracture healing without secondary loss of reduction in all cases. CONCLUSION: External fixation with bone cement implantation is a valid alternative treatment for the management of displaced open calcaneal fractures with a low rate of complications. LEVEL OF EVIDENCE: IV, retrospective case series.


Asunto(s)
Calcáneo , Fracturas Óseas , Fracturas Abiertas , Fracturas Intraarticulares , Adulto , Cementos para Huesos , Placas Óseas , Calcáneo/diagnóstico por imagen , Calcáneo/cirugía , Fijadores Externos , Femenino , Fijación de Fractura , Fijación Interna de Fracturas , Fracturas Óseas/diagnóstico por imagen , Fracturas Óseas/cirugía , Fracturas Abiertas/diagnóstico por imagen , Fracturas Abiertas/cirugía , Humanos , Fracturas Intraarticulares/diagnóstico por imagen , Fracturas Intraarticulares/cirugía , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Resultado del Tratamiento
9.
Vet Res ; 52(1): 7, 2021 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-33431056

RESUMEN

Elucidating virus-cell interactions is fundamental to understanding viral replication and identifying targets for therapeutic control of viral infection. The extracellular signal-regulated kinase (ERK) pathway has been shown to regulate pathogenesis during many viral infections, but its role during coronavirus infection is undetermined. Infectious bronchitis virus is the representative strain of Gammacoronavirus, which causes acute and highly contagious diseases in the poultry farm. In this study, we investigated the role of ERK1/2 signaling pathway in IBV infection. We found that IBV infection activated ERK1/2 signaling and the up-regulation of phosphatase DUSP6 formed a negative regulation loop. Pharmacological inhibition of MEK1/2-ERK1/2 signaling suppressed the expression of DUSP6, promoted cell death, and restricted virus replication. In contrast, suppression of DUSP6 by chemical inhibitor or siRNA increased the phosphorylation of ERK1/2, protected cells from apoptosis, and facilitated IBV replication. Overexpression of DUSP6 decreased the level of phospho-ERK1/2, promoted apoptosis, while dominant negative mutant DUSP6-DN lost the regulation function on ERK1/2 signaling and apoptosis. In conclusion, these data suggest that MEK-ERK1/2 signaling pathway facilitates IBV infection, probably by promoting cell survival; meanwhile, induction of DUSP6 forms a negative regulation loop to restrict ERK1/2 signaling, correlated with increased apoptosis and reduced viral load. Consequently, components of the ERK pathway, such as MEK1/2 and DUSP6, represent excellent targets for the development of antiviral drugs.


Asunto(s)
Apoptosis/fisiología , Fosfatasas de Especificidad Dual/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Virus de la Bronquitis Infecciosa/fisiología , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/metabolismo , Animales , Butadienos/farmacología , Línea Celular , Pollos , Chlorocebus aethiops , Fosfatasas de Especificidad Dual/antagonistas & inhibidores , Fosfatasas de Especificidad Dual/genética , Quinasas MAP Reguladas por Señal Extracelular/genética , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/antagonistas & inhibidores , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/genética , Nitrilos/farmacología , Regulación hacia Arriba , Replicación Viral
10.
BMC Musculoskelet Disord ; 22(1): 379, 2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33892699

RESUMEN

BACKGROUNDS: Theaim of this study was to assess the efficacy of a modified intrafocal pinningtechnique with three-dimensional (3D) planning to facilitate volar plating in dorsally comminuted intra-articular distal radius fractures. METHODS: Intotal 35 AO/OTA type C2 and C3 fractures were finally included.The 3D digital model of the fracture was reconstructed based on preoperative computedtomographic (CT) images, with the displacement of the comminuted dorsalfragment and the intra-articular fragment analyzed for preoperative planning. During operation, amodified intrafocal pinning technique was applied percutaneously from thedorsal aspect of the radius to reduce the collapsed intra-articular fragmentfollowing volar plating. Adequate reduction was confirmed in all of patientsconsidering radial height, radial inclination and volar tilt in postoperativeradiographs. RESULTS: No significant fracture re-displacement wasobserved in most of the cases during a mean follow-up period of 17.4 months, exceptfor two patients withthe C3 fracture. All of the patients achieved adequate clinicalROMs at 12 months postoperatively, with a mean DASH score of 12.0. Most of the patients achievedan excellent (n = 21) or good (n = 12) Gartland and Werley wrist score. CONCLUSIONS: Ourmodified intrafocal pinning technique with 3D planning contributes to a satisfactoryclinical and radiological outcome in dorsally comminuted intra-articular distalradius fractures fixed with a volar locking plate. TRIALREGISTRATION: Notapplicable because the design of the study is retrospective.


Asunto(s)
Fracturas Conminutas , Fracturas del Radio , Placas Óseas , Fijación Interna de Fracturas , Fracturas Conminutas/diagnóstico por imagen , Fracturas Conminutas/cirugía , Humanos , Fracturas del Radio/diagnóstico por imagen , Fracturas del Radio/cirugía , Rango del Movimiento Articular , Estudios Retrospectivos , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA