RESUMEN
Lithium-sulfur (Li-S) batteries, which store energy through reversible redox reactions with multiple electron transfers, are seen as one of the promising energy storage systems of the future due to their outstanding advantages. However, the shuttle effect, volume expansion, low conductivity of sulfur cathodes, and uncontrollable dendrite phenomenon of the lithium anodes have hindered the further application of Li-S batteries. In order to solve the problems and clarify the electrochemical reaction mechanism, various types of materials, such as metal compounds and carbon materials, are used in Li-S batteries. Polymers, as a class of inexpensive, lightweight, and electrochemically stable materials, enable the construction of low-cost, high-specific capacity Li-S batteries. Moreover, polymers can be multifunctionalized by obtaining rich structures through molecular design, allowing them to be applied not only in cathodes, but also in binders and solid-state electrolytes to optimize electrochemical performance from multiple perspectives. The most widely used areas related to polymer applications in Li-S batteries, including cathodes and electrolytes, are selected for a comprehensive overview, and the relevant mechanisms of polymer action in different components are discussed. Finally, the prospects for the practical application of polymers in Li-S batteries are presented in terms of advanced characterization and mechanistic analysis.
RESUMEN
Organic cathode materials show excellent prospects for sodium-ion batteries (SIBs) owing to their high theoretical capacity. However, the high solubility and low electrical conductivity of organic compounds result in inferior cycle stability and rate performance. Herein, an extended conjugated organic small molecule is reported that combines electroactive quinone with piperazine by the structural designability of organic materials, 2,3,7,8-tetraamino-5,10-dihydrophenazine-1,4,6,9-tetraone (TDT). Through intermolecular condensation reaction, many redox-active groups CâO and extended conjugated structures are introduced without sacrificing the specific capacity, which ensures the high capacity of the electrode and enhances rate performance. The abundant NH2 groups can form intermolecular hydrogen bonds with the CâO groups to enhance the intermolecular interactions, resulting in lower solubility and higher stability. The TDT cathode delivers a high initial capacity of 293 mAh g-1 at 500 mA g-1 and maintains 90 mAh g-1 at an extremely high current density of 70 A g-1. The TDT || Na-intercalated hard carbon (Na-HC) full cells provide an average capacity of 210 mAh g-1 during 100 cycles at 500 mA g-1 and deliver a capacity of 120 mAh g-1 at 8 A g-1.
RESUMEN
The exploitation of multicomponent composites (MCCs) has become the main pathway for obtaining advanced microwave absorption materials (MAMs). Herein, a metal valence state modulation strategy is proposed to tune the electromagnetic (EM) parameters and improve microwave absorption performances. Core@shell hollow carbon microspheres@MoSe2 and hollow carbon microspheres@MoSe2/MoOx MCCs with various mixed-valence states content are well-designed and produced by a simple hydrothermal reaction or/and heat treatment process. The results reveal that the thermal treatment of hollow carbon microspheres@MoSe2 in Ar and Ar/H2 leads to the in situ formation of MoOx and multivalence state, respectively, and the enhanced content of Mo4+ in the designed MCCs greatly boosts their impedance matching characteristics, polarization, and conduction loss capacities, which lead to their evidently improved EM wave absorption properties. Amongst, the as-prepared hollow carbon microspheres@MoSe2/MoOx MCCs achieve an effective absorption bandwidth of 5.80 GHz under a matching thickness of 1.97 mm and minimum reflection loss of -21.49 dB. Therefore, this work offers a simple and universal method to fabricate core@shell hollow carbon microspheres@MoSe2/MoOx MCCs, and a novel and feasible metal valence state modulation strategy is proposed to develop high-efficiency MAMs.
RESUMEN
Developing efficient and stable halide perovskite-based photocatalysts for highly selectivity reduction CO2 to valuable fuels remains a significant challenge due to their intrinsic instability. Herein, a novel heterostructure featuring 2D Cs3Sb2I9 nanosheets on a 3D flower-like mesoporous NiTiO3 framework using a top-down stepwise membrane fabrication technique is constructed. The unique bilayer heterostructure formed on the 3D mesoporous framework endowed NiTiO3/Cs3Sb2I9 with sufficient and close interface contact, minimizing charge transport distance, and effectively promoting the charge transfer at the interface, thus improving the reaction efficiency of the catalyst surface. As revealed by characterization and calculation, the coupling of Cs3Sb2I9 with NiTiO3 facilitates the hydrogenation process during catalytic, directing reaction intermediates toward highly selective CH4 production. Furthermore, the van der Waals forces inherent in the 3D/2D heterostructure with face-to-face contact provide superior stability, ensuring the efficient realization of photocatalytic CO2 reduction to CH4. Consequently, the optimized 3D/2D NiTiO3/Cs3Sb2I9 heterostructure demonstrates an impressive CH4 yield of 43.4 µmol g-1 h-1 with a selectivity of up to 88.6%, surpassing most reported perovskite-based photocatalysts to date. This investigation contributes to overcoming the challenges of commercializing perovskite-based photocatalysts and paves the way for the development of sustainable and efficient CO2 conversion technologies.
RESUMEN
Electromagnetic (EM) metamaterials have garnered considerable attention due to their capacity to achieve negative parameters, significantly influencing the integration of natural materials with artificially structural media. The emergence of carbon aerogels (CAs) offers an opportunity to create lightweight EM metamaterials, notable for their promising EM shielding or absorption effects. This paper introduces an efficient, low-cost method for fabricating CAs without requiring stringent drying conditions. By finely tuning the ZnCl2/lignin ratio, the porosity is controlled in CAs. This control leads to an epsilon-negative response in the radio-frequency region, driven by the intrinsic plasmonic state of the 3D carbon network, as opposed to traditional periodic building blocks. This approach yields a tunable and weakly epsilon-negative response, reaching an order of magnitude of -103 under MHz frequencies. Equivalent circuit analysis highlights the inductive characteristics of CAs, correlating their significant dielectric loss at low frequencies. Additionally, EM simulations are performed to evaluate the distribution of the electric field vector in epsilon-negative CAs, showcasing their potential for effective EM shielding. The lignin-derived, lightweight CAs with their tunable epsilon-negative response hold promise for pioneering new directions in EM metamaterials and broadening their application in diverse extreme conditions.
RESUMEN
This study systematically explored how different hydration levels (45 %, 50 %, and 55 % water addition) affect the evolution of gluten network morphology, distribution, conformational and molecular transition, and moisture migration during the processing of Chinse steamed bread (CSB), and their impact on quality formation. Higher hydration levels resulted in a more uniform distribution and fibrous structure of the gluten network during mixing. However, excessive hydration (55 %) caused gluten fibers to rupture during fermentation. This increased the specific volume but decreased the chewiness and stickiness of CSB. MRI results highlighted that differences in moisture migration and internal structure among samples with different hydration levels were enlarged after steaming. AFM images revealed the increase in both protein molecular chain height and width with increasing hydration level, particularly after steaming. Moreover, high hydration levels promoted the depolymerization of glutenin macropolymers during mixing, fermentation, as well as repolymerization during cooking. These results indicated that both macroscopic qualities and molecular structure of gluten protein became more sensitive to the physical and biochemical processes during CSB processing. These dynamic transitions play a crucial role in determining dough rheological properties and CSB's overall quality. This research offers theoretical insights for precise dough product regulation and understanding underlying mechanisms.
RESUMEN
Considering the serious electromagnetic wave (EMW) pollution problems and complex application condition, there is a pressing need to amalgamate multiple functionalities within a single substance. However, the effective integration of diverse functions into designed EMW absorption materials still faces the huge challenges. Herein, reduced graphene oxide/carbon foams (RGO/CFs) with two-dimensional/three-dimensional (2D/3D) van der Waals (vdWs) heterostructures were meticulously engineered and synthesized utilizing an efficient methodology involving freeze-drying, immersing absorption, secondary freeze-drying, followed by carbonization treatment. Thanks to their excellent linkage effect of amplified dielectric loss and optimized impedance matching, the designed 2D/3D RGO/CFs vdWs heterostructures demonstrated commendable EMW absorption performances, achieving a broad absorption bandwidth of 6.2 GHz and a reflection loss of - 50.58 dB with the low matching thicknesses. Furthermore, the obtained 2D/3D RGO/CFs vdWs heterostructures also displayed the significant radar stealth properties, good corrosion resistance performances as well as outstanding thermal insulation capabilities, displaying the great potential in complex and variable environments. Accordingly, this work not only demonstrated a straightforward method for fabricating 2D/3D vdWs heterostructures, but also outlined a powerful mixed-dimensional assembly strategy for engineering multifunctional foams for electromagnetic protection, aerospace and other complex conditions.
RESUMEN
Batteries dissolving active materials in liquids possess safety and size advantages compared to solid-based batteries, yet the intrinsic liquid properties lead to material cross-over induced self-discharge both during cycling and idle when the electrolytes are in contact, thus highly efficient and cost-effective solutions to minimize cross-over are in high demand. An ultra-low self-discharge aqueous|organic membraneless battery using dichloromethane (CH2 Cl2 ) and tetrabutylammonium bromide (TBABr) added to a zinc bromide (ZnBr2 ) solution as the electrolyte is demonstrated. The polybromide is confined in the organic phase, and bromine (Br2 ) diffusion-induced self-discharge is minimized. At 90% state of charge (SOC), the membraneless ZnBr2 |TBABr (Z|T) battery shows an open circuit voltage (OCV) drop of only 42 mV after 120 days, 152 times longer than the ZnBr2 battery, and superior to 102 previous reports from all types of liquid active material batteries. The 120-day capacity retention of 95.5% is higher than commercial zinc-nickel (Zn-Ni) batteries and vanadium redox flow batteries (VRFB, electrolytes stored separately) and close to lithium-ion (Li-ion) batteries. Z|T achieves >500 cycles (2670 h, 0.5 m electrolyte, 250 folds of membraneless ZnBr2 battery) with ≈100% Coulombic efficiency (CE). The simple and cost-effective design of Z|T provides a conceptual inspiration to regulate material cross-over in liquid-based batteries to realize extended operation.
RESUMEN
Stretchable and conductive nanocomposites are emerging as important constituents of soft mechanical sensors for health monitoring, human-machine interactions, and soft robotics. However, tuning the materials' properties and sensor structures to the targeted mode and range of mechanical stimulation is limited by current fabrication approaches, particularly in scalable polymer melt techniques. Here, thermoplastic elastomer-based nanocomposites are engineered and novel rheological requirements are proposed for their compatibility with fiber processing technologies, yielding meters-long, soft, and highly versatile stretchable fiber devices. Based on microstructural changes in the nanofiller arrangement, the resistivity of the nanocomposite is tailored in its final device architecture across an entire order of magnitude as well as its sensitivity to strain via tuning thermal drawing processing parameters alone. Moreover, the prescribed electrical properties are coupled with suitable device designs and several fiber-based sensors are proposed aimed at specific types of deformations: i) a robotic fiber with an integrated bending mechanism where changes as small as 5° are monitored by piezoresistive nanocomposite elements, ii) a pressure-sensing fiber based on a geometrically controlled resistive signal that responds with a sub-newton resolution to changes in pressing forces, and iii) a strain-sensing fiber that tracks changes in capacitance up to 100% elongation.
RESUMEN
Negative refraction provides a platform to manipulate mid-infrared and terahertz radiation for molecular sensing and thermal emission applications. However, its implementation based on metamaterials and plasmonic media presents challenges with optical losses, limited spatial confinement, and lack of active tunability in this spectral range. We demonstrate gate-tunable negative refraction at mid-infrared frequencies using hybrid topological polaritons in van der Waals heterostructures. Specifically, we visualize wide-angle negatively refracted polaritons in α-MoO3 films partially decorated with graphene, undergoing reversible planar nanoscale focusing. Our atomically thick heterostructures weaken scattering losses at the interface while enabling an actively tunable transition of normal to negative refraction through electrical gating. We propose polaritonic negative refraction as a promising platform for infrared applications such as electrically tunable super-resolution imaging, nanoscale thermal manipulation, enhanced molecular sensing, and on-chip optical circuitry.
RESUMEN
A series of block copolymers with fixed length of the semiconductor-block poly(3-butylthiophene) (P3BT) and varying length of the insulator-block polystyrene (PS) are synthesized. These copolymers are blended with phenyl-C61-butyric acid methyl ester (PCBM) for the bulk heterojunction photoactive layers. With appropriate insulator-block length and donor-acceptor ratio, the power conversion efficiency increases by one order of magnitude compared with reference devices with pure P3BT/PCBM. PS blocks improve the miscibility of the active layer blends remarkably. The P3BT-b-PS crystallizes as nanorods with the P3BT core covered with the PS-block, which creates a nanoscale tunneling barrier between donor and acceptor leading to more efficient transportation of charge carriers in the semiconductors.
Asunto(s)
Suministros de Energía Eléctrica , Polímeros/química , Nanotubos/química , Polímeros/síntesis química , Semiconductores , Energía SolarRESUMEN
Aim: To compare high-power (HP) vs. conventional-power (CP) radiofrequency ablation for atrial fibrillation (AF). Methods: We retrospectively enrolled AF patients undergoing CP (30-40 W, 43 patients) or HP (50 W, 49 patients) radiofrequency ablation. Immediate pulmonary vein (PV) single-circle isolation, PV-ablation time, AF recurrence, AF recurrence-free survival, and complications were analyzed. Results: Diabetes was more common in the CP group than in the HP group (27.91% vs. 10.20%, P = 0.029). The left PV single-circle isolation rate (62.79% vs. 65.31%), right PV single-circle isolation rate (48.84% vs. 53.06%), and bilateral PV single-circle isolation rate (32.56% vs. 38.78%; all P > 0.05) did not differ between the groups. Single-circle ablation times for the left PVs (12.79 ± 3.39 vs. 22.94 ± 6.39 min), right PVs (12.18 ± 3.46 vs. 20.67 ± 5.44 min), and all PVs (25.85 ± 6.04 vs. 45.66 ± 11.11 min; all P < 0.001) were shorter in the HP group. Atrial fibrillation recurrence within 3 months (13.95% vs. 18.37%), at 3 months (11.63% vs. 8.16%), and at 6 months after ablation (18.60% vs. 12.24%; all P > 0.05) was similar in both groups. Atrial fibrillation recurrence-free survival did not differ between the groups (Kaplan-Meier analysis). Cardiac rupture and pericardial tamponade did not occur in any patient. Pops occurred in 2 and 0 patients in the HP and CP groups, respectively (4.08% vs. 0.00%, P = 0.533). Conclusion: High-power ablation improved operation time and efficiency without increasing complications.
RESUMEN
Manipulation of the propagation and energy-transport characteristics of subwavelength infrared (IR) light fields is critical for the application of nanophotonic devices in photocatalysis, biosensing, and thermal management. In this context, metamaterials are useful composite materials, although traditional metal-based structures are constrained by their weak mid-IR response, while their associated capabilities for optical propagation and focusing are limited by the size of attainable artificial optical structures and the poor performance of the available active means of control. Herein, a tunable planar focusing device operating in the mid-IR region is reported by exploiting highly oriented in-plane hyperbolic phonon polaritons in α-MoO3 . Specifically, an unprecedented change of effective focal length of polariton waves from 0.7 to 7.4 µm is demonstrated by the following three different means of control: the dimension of the device, the employed light frequency, and engineering of phonon-plasmon hybridization. The high confinement characteristics of phonon polaritons in α-MoO3 permit the focal length and focal spot size to be reduced to 1/15 and 1/33 of the incident wavelength, respectively. In particular, the anisotropic phonon polaritons supported in α-MoO3 are combined with tunable surface-plasmon polaritons in graphene to realize in situ and dynamical control of the focusing performance, thus paving the way for phonon-polariton-based planar nanophotonic applications.
RESUMEN
Control over charge carrier density provides an efficient way to trigger phase transitions and modulate the optoelectronic properties of materials. This approach can also be used to induce topological transitions in the optical response of photonic systems. Here we report a topological transition in the isofrequency dispersion contours of hybrid polaritons supported by a two-dimensional heterostructure consisting of graphene and α-phase molybdenum trioxide. By chemically changing the doping level of graphene, we observed that the topology of polariton isofrequency surfaces transforms from open to closed shapes as a result of doping-dependent polariton hybridization. Moreover, when the substrate was changed, the dispersion contour became dominated by flat profiles at the topological transition, thus supporting tunable diffractionless polariton propagation and providing local control over the optical contour topology. We achieved subwavelength focusing of polaritons down to 4.8% of the free-space light wavelength by using a 1.5-µm-wide silica substrate as an in-plane lens. Our findings could lead to on-chip applications in nanoimaging, optical sensing and manipulation of energy transfer at the nanoscale.
RESUMEN
Due to the two-dimensional character of graphene, the plasmons sustained by this material have been invariably studied in supported samples so far. The substrate provides stability for graphene but often causes undesired interactions (such as dielectric losses, phonon hybridization, and impurity scattering) that compromise the quality and limit the intrinsic flexibility of graphene plasmons. Here, we demonstrate the visualization of plasmons in suspended graphene at room temperature, exhibiting high-quality factor Q~33 and long propagation length > 3 µm. We introduce the graphene suspension height as an effective plasmonic tuning knob that enables in situ change of the dielectric environment and substantially modulates the plasmon wavelength, propagation length, and group velocity. Such active control of micrometer plasmon propagation facilitates near-unity-order modulation of nanoscale energy flow that serves as a plasmonic switch with an on-off ratio above 14. The suspended graphene plasmons possess long propagation length, high tunability, and controllable energy transmission simultaneously, opening up broad horizons for application in nano-photonic devices.
RESUMEN
Pt/Bi2WO6 composite photocatalysts were prepared by a facile photoreduction method. Pt nanoparticles with an average size of 5-8 nm were successfully deposited on the surface of Bi2WO6 microspheres and the photocatalytic activity of Bi2WO6 was greatly improved by Pt nanoparticles. The photo-induced charge transfer properties of samples were studied by means of surface photovoltage (SPV) and transient photovoltage (TPV) techniques, giving an insight into the intrinsic reasons of the improvement in photocatalytic activity. The SPV and TPV results revealed that the deposited Pt nanoparticles could trap photo-induced electrons and then largely enhance the separation efficiency of photo-induced charge carriers.
RESUMEN
Fibers that harvest mechanical energy via the triboelectric effect are excellent candidates as power sources for wearable electronics and functional textiles. Thus far however, their fabrication remains complex, and exhibited performances are below the state-of-the-art of 2D planar configurations, making them impractical. Here, we demonstrate the scalable fabrication of micro-structured stretchable triboelectric fibers with efficiencies on par with planar systems. We use the thermal drawing process to fabricate advanced elastomer fibers that combine a micro-textured surface with the integration of several liquid metal electrodes. Such fibers exhibit high electrical outputs regardless of repeated large deformations, and can sustain strains up to 560%. They can also be woven into deformable machine-washable textiles with high electrical outputs up to 490 V, 175 nC. In addition to energy harvesting, we demonstrate self-powered breathing monitoring and gesture sensing capabilities, making this triboelectric fiber platform an exciting avenue for multi-functional wearable systems and smart textiles.
RESUMEN
Micro- and nanoscale metallic glasses offer exciting opportunities for both fundamental research and applications in healthcare, micro-engineering, optics and electronics. The scientific and technological challenges associated with the fabrication and utilization of nanoscale metallic glasses, however, remain unresolved. Here, we present a simple and scalable approach for the fabrication of metallic glass fibres with nanoscale architectures based on their thermal co-drawing within a polymer matrix with matched rheological properties. Our method yields well-ordered and uniform metallic glasses with controllable feature sizes down to a few tens of nanometres, and aspect ratios greater than 1010. We combine fluid dynamics and advanced in situ transmission electron microscopy analysis to elucidate the interplay between fluid instability and crystallization kinetics that determines the achievable feature sizes. Our approach yields complex fibre architectures that, combined with other functional materials, enable new advanced all-in-fibre devices. We demonstrate in particular an implantable metallic glass-based fibre probe tested in vivo for a stable brain-machine interface that paves the way towards innovative high-performance and multifunctional neuro-probes.
RESUMEN
Food engineering faces the difficult challenge of combining taste, i.e., tailoring texture and rheology of food matrices with the balanced intake of healthy nutrients. In materials science, fiber suspensions and composites have been developed as a versatile and successful approach to tailor rheology while imparting materials with added functionalities. Structures based on such types of physical (micro)fibers are however rare in food production mainly due to a lack of food-grade materials and processes allowing for the fabrication of fibers with controlled sizes and microstructures. Here, the controlled fabrication of multi-material microstructured edible fibers is demonstrated using a food compatible process based on preform-to-fiber thermal drawing. It is shown that different material systems based on gelatin or casein, with plasticizers such as glycerol, can be thermally drawn into fibers with various geometries and cross-sectional structures. It is demonstrated that fibers can exhibit tailored mechanical properties post-drawing, and can encapsulate nutrients to control their release. The versatility of fiber materials is also exploited to demonstrate the fabrication of food-grade fabrics and scaffolds for food growth. The end results establish a new field in food production that relies on fiber-based simple and eco-friendly processes to realize enjoyable yet healthy and nutritious products.
Asunto(s)
Ingeniería/métodos , Alimentos , Gelatina/química , Glicerol/química , Estilo de Vida Saludable , Fenómenos Mecánicos , TemperaturaRESUMEN
The ability to integrate complex electronic and optoelectronic functionalities within soft and thin fibers is one of today's key advanced manufacturing challenges. Multifunctional and connected fiber devices will be at the heart of the development of smart textiles and wearable devices. These devices also offer novel opportunities for surgical probes and tools, robotics and prostheses, communication systems, and portable energy harvesters. Among the various fiber-processing methods, the preform-to-fiber thermal drawing technique is a very promising process that is used to fabricate multimaterial fibers with complex architectures at micro- and nanoscale feature sizes. Recently, a series of scientific and technological breakthroughs have significantly advanced the field of multimaterial fibers, allowing a wider range of functionalities, better performance, and novel applications. Here, these breakthroughs, in the fundamental understanding of the fluid dynamics, rheology, and tailoring of materials microstructures at play in the thermal drawing process, are presented and critically discussed. The impact of these advances on the research landscape in this field and how they offer significant new opportunities for this rapidly growing scientific and technological platform are also discussed.