Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Neurosci Res ; 93(2): 333-9, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25395088

RESUMEN

Levo-tetrahydropalmatine (l-THP), a main bioactive Chinese herbal constituent from the genera Stephania and Corydalis, has been in use in clinical practice for years in China as a traditional analgesic agent. However, the mechanism underlying the analgesic action of l-THP is poorly understood. This study shows that l-THP can exert an inhibitory effect on the functional activity of native acid-sensing ion channels (ASICs), which are believed to mediate pain caused by extracellular acidification. l-THP dose dependently decreased the amplitude of proton-gated currents mediated by ASICs in rat dorsal root ganglion (DRG) neurons. l-THP shifted the proton concentration-response curve downward, with a decrease of 40.93% ± 8.45% in the maximum current response to protons, with no significant change in the pH0.5 value. Moreover, l-THP can alter the membrane excitability of rat DRG neurons to acid stimuli. It significantly decreased the number of action potentials and the amplitude of the depolarization induced by an extracellular pH drop. Finally, peripherally administered l-THP inhibited the nociceptive response to intraplantar injection of acetic acid in rats. These results indicate that l-THP can inhibit the functional activity of ASICs in dissociated primary sensory neurons and relieve acidosis-evoked pain in vivo, which for the first time provides a novel peripheral mechanism underlying the analgesic action of l-THP.


Asunto(s)
Canales Iónicos Sensibles al Ácido/metabolismo , Alcaloides de Berberina/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Ganglios Espinales/citología , Neuronas/efectos de los fármacos , Bloqueadores del Canal Iónico Sensible al Ácido/farmacología , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Esquema de Medicación , Concentración de Iones de Hidrógeno , Masculino , Potenciales de la Membrana/efectos de los fármacos , Dolor/inducido químicamente , Dolor/prevención & control , Dimensión del Dolor/efectos de los fármacos , Técnicas de Placa-Clamp , Protones/efectos adversos , Ratas , Ratas Sprague-Dawley
2.
Int J Mol Med ; 46(2): 782-794, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32468069

RESUMEN

Nav1.7 is closely associated with neuropathic pain. Hydrogen sulfide (H2S) has recently been reported to be involved in numerous biological functions, and it has been shown that H2S can enhance the sodium current density, and inhibiting the endogenous production of H2S mediated by cystathionine ß­synthetase (CBS) using O­(carboxymethyl)hydroxylamine hemihydrochloride (AOAA) can significantly reduce the expression of Nav1.7 and thus the sodium current density in rat dorsal root ganglion (DRG) neurons. In the present study, it was shown that the fluorescence intensity of H2S was increased in a spared nerve injury (SNI) model and AOAA inhibited this increase. Nav1.7 is expressed in DRG neurons, and the expression of CBS and Nav1.7 were increased in DRG neurons 7, 14 and 21 days post­operation. AOAA inhibited the increase in the expression of CBS, phosphorylated (p)­MEK1/2, p­ERK1/2 and Nav1.7 induced by SNI, and U0126 (a MEK blocker) was able to inhibit the increase in p­MEK1/2, p­ERK1/2 and Nav1.7 expression. However, PF­04856264 did not inhibit the increase in CBS, p­MEK1/2, p­ERK1/2 or Nav1.7 expression induced by SNI surgery. The current density of Nav1.7 was significantly increased in the SNI model and administration of AOAA and U0126 both significantly decreased the density. In addition, AOAA, U0126 and PF­04856264 inhibited the decrease in rheobase, and the increase in action potential induced by SNI in DRG neurons. There was no significant difference in thermal withdrawal latency among each group. However, the time the animals spent with their paw lifted increased significantly following SNI, and the time the animals spent with their paw lifted decreased significantly following the administration of AOAA, U0126 and PF­04856264. In conclusion, these data show that Nav1.7 expression in DRG neurons is upregulated by CBS­derived endogenous H2S in an SNI model, contributing to the maintenance of neuropathic pain.


Asunto(s)
Sulfuro de Hidrógeno/metabolismo , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Neuralgia/metabolismo , Animales , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Masculino , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal/genética , Transducción de Señal/fisiología , Regulación hacia Arriba/genética , Regulación hacia Arriba/fisiología
3.
Neuropharmacology ; 103: 174-82, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26188144

RESUMEN

Prolactin (PRL) is a polypeptide hormone produced and released from the pituitary and extrapituitary tissues. It regulates activity of nociceptors and causes hyperalgesia in pain conditions, but little is known the molecular mechanism. We report here that PRL can exert a potentiating effect on the functional activity of acid-sensing ion channels (ASICs), key sensors for extracellular protons. First, PRL dose-dependently increased the amplitude of ASIC currents with an EC50 of (5.89 ± 0.28) × 10(-8) M. PRL potentiation of ASIC currents was also pH dependent. Second, PRL potentiation of ASIC currents was blocked by Δ1-9-G129R-hPRL, a PRL receptor antagonist, and removed by intracellular dialysis of either protein kinase C inhibitor GF109203X, protein interacting with C-kinase 1(PICK1) inhibitor FSC-231, or PI3K inhibitor AS605240. Third, PRL altered acidosis-evoked membrane excitability of DRG neurons and caused a significant increase in the amplitude of the depolarization and the number of spikes induced by acid stimuli. Four, PRL exacerbated nociceptive responses to injection of acetic acid in female rats. Finally, PRL displayed a stronger effect on ASIC mediated-currents and nociceptive behavior in intact female rats than OVX female and male rats and thus modulation of PRL may be gender-dependent. These results suggest that PRL up-regulates the activity of ASICs and enhances ASIC mediated nociceptive responses in female rats, which reveal a novel peripheral mechanism underlying PRL involvement in hyperalgesia.


Asunto(s)
Canales Iónicos Sensibles al Ácido/fisiología , Ganglios Espinales/fisiología , Prolactina/fisiología , Células Receptoras Sensoriales/fisiología , Ácido Acético/farmacología , Potenciales de Acción/efectos de los fármacos , Animales , Relación Dosis-Respuesta a Droga , Femenino , Ganglios Espinales/efectos de los fármacos , Potenciales de la Membrana/efectos de los fármacos , Nocicepción/efectos de los fármacos , Nocicepción/fisiología , Prolactina/análogos & derivados , Prolactina/farmacología , Protones , Ratas , Ratas Sprague-Dawley , Receptores de Prolactina/antagonistas & inhibidores , Receptores de Prolactina/fisiología , Células Receptoras Sensoriales/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
4.
Neurosci Lett ; 593: 61-5, 2015 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-25782631

RESUMEN

Arginine vasopressin (AVP) plays a regulatory role in nociception. Intrathecal administration of AVP displays an antinociceptive effect. However, little is understood about the mechanism underlying spinal AVP analgesia. Here, we have found that spinal AVP dose dependently reduced the second, but not first, phase of formalin-induced spontaneous nociception in mice. The AVP analgesia was completely blocked by intrathecal injected SR 49059, a vasopressin-1A (V1A) receptor antagonist. However, spinal AVP failed to exert its antinociceptive effect on the second phase formalin-induced spontaneous nociception in V1A receptor knock-out (V1A-/-) mice. The AVP analgesia was also reversed by bicuculline, a GABAA receptor antagonist. Moreover, AVP potentiated GABA-activated currents in dorsal root ganglion neurons from wild-type littermates, but not from V1A-/- mice. Our results may reveal a novel spinal mechanism of AVP analgesia by enhancing the GABAA receptor function in the spinal cord through V1A receptors.


Asunto(s)
Arginina Vasopresina/metabolismo , Nocicepción/efectos de los fármacos , Dolor Nociceptivo/psicología , Receptores de GABA-A/metabolismo , Receptores de Vasopresinas/metabolismo , Médula Espinal/metabolismo , Analgésicos/farmacología , Animales , Antagonistas de los Receptores de Hormonas Antidiuréticas/farmacología , Arginina Vasopresina/farmacología , Antagonistas de Receptores de GABA-A/farmacología , Ganglios Espinales/fisiopatología , Inyecciones Espinales , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/fisiología , Dolor Nociceptivo/metabolismo , Dolor Nociceptivo/fisiopatología , Dimensión del Dolor , Receptores de Vasopresinas/genética , Médula Espinal/efectos de los fármacos
5.
Eur J Pharmacol ; 767: 24-9, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26435025

RESUMEN

Prokineticin 2 (PK2), a new chemokine, causes mechanical hypersensitivity in the rat hind paw, but little is known about the molecular mechanism. Here, we have found that ionotropic P2X receptor is essential to mechanical allodynia induced by PK2. First, intraplantar injection of high dose (3 or 10 pmol) of PK2 significantly increased paw withdrawal response frequency (%) to innocuous mechanical stimuli (mechanical allodynia). And the mechanical allodynia induced by PK2 was prevented by co-administration of TNP-ATP, a selective P2X receptor antagonist. Second, although low dose (0.3 or 1 pmol) of PK2 itself did not produce an allodynic response, it significantly facilitated the mechanical allodynia evoked by intraplantar injection of α,ß-methylene ATP (α,ß-meATP). Third, PK2 concentration-dependently potentiated α,ß-meATP-activated currents in rat dorsal root ganglion (DRG) neurons. Finally, PK2 receptors and intracellular signal transduction were involved in PK2 potentiation of α,ß-meATP-induced mechanical allodynia and α,ß-meATP-activated currents, since the potentiation were blocked by PK2 receptor antagonist PKRA and selective PKC inhibitor GF 109203X. These results suggested that PK2 facilitated mechanical allodynia induced by α,ß-meATP through a mechanism involved in sensitization of cutaneous P2X receptors expressed by nociceptive nerve endings.


Asunto(s)
Adenosina Trifosfato/análogos & derivados , Hormonas Gastrointestinales/farmacología , Hiperalgesia/inducido químicamente , Neuropéptidos/farmacología , Adenosina Trifosfato/efectos adversos , Adenosina Trifosfato/farmacología , Animales , Sinergismo Farmacológico , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/fisiología , Hormonas Gastrointestinales/antagonistas & inhibidores , Hiperalgesia/fisiopatología , Indoles/farmacología , Masculino , Maleimidas/farmacología , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Neuropéptidos/antagonistas & inhibidores , Proteína Quinasa C/antagonistas & inhibidores , Antagonistas del Receptor Purinérgico P2X/farmacología , Ratas , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores de Péptidos/antagonistas & inhibidores , Receptores Purinérgicos P2X3/efectos de los fármacos , Receptores Purinérgicos P2X3/fisiología
6.
Endocrinology ; 156(12): 4660-71, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26441237

RESUMEN

Sex differences have been reported in a number of pain conditions. Women are more sensitive to most types of painful stimuli than men, and estrogen plays a key role in the sex differences in pain perception. However, it is unclear whether there is a sex difference in acidosis-evoked pain. We report here that both male and female rats exhibit nociceptive behaviors in response to acetic acid, with females being more sensitive than males. Local application of exogenous 17ß-estradiol (E2) exacerbated acidosis-evoked nociceptive response in male rats. E2 and estrogen receptor (ER)-α agonist 1,3,5-Tris(4-hydroxyphenyl)-4-propyl-1H-pyrazole, but not ERß agonist 2,3-bis(4-hydroxyphenyl)-propionitrile, replacement also reversed attenuation of the acetic acid-induced nociceptive response in ovariectomized females. Moreover, E2 can exert a rapid potentiating effect on the functional activity of acid-sensing ion channels (ASICs), which mediated the acidosis-induced events. E2 dose dependently increased the amplitude of ASIC currents with a 42.8 ± 1.6 nM of EC50. E2 shifted the concentration-response curve for proton upward with a 50.1% ± 6.2% increase of the maximal current response to proton. E2 potentiated ASIC currents via an ERα and ERK1/2 signaling pathway. E2 also altered acidosis-evoked membrane excitability of dorsal root ganglia neurons and caused a significant increase in the amplitude of the depolarization and the number of spikes induced by acidic stimuli. E2 potentiation of the functional activity of ASICs revealed a peripheral mechanism underlying this sex difference in acetic acid-induced nociception.


Asunto(s)
Ácido Acético/farmacología , Canales Iónicos Sensibles al Ácido/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Estradiol/farmacología , Estrógenos/farmacología , Nocicepción/efectos de los fármacos , Nociceptores/efectos de los fármacos , Percepción del Dolor/efectos de los fármacos , Células Receptoras Sensoriales/efectos de los fármacos , Canales Iónicos Sensibles al Ácido/metabolismo , Acidosis , Animales , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Receptor alfa de Estrógeno/agonistas , Receptor beta de Estrógeno/agonistas , Femenino , Ganglios Espinales/citología , Ganglios Espinales/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Nitrilos/farmacología , Nociceptores/metabolismo , Técnicas de Placa-Clamp , Fenoles/farmacología , Pirazoles/farmacología , Ratas , Ratas Sprague-Dawley , Células Receptoras Sensoriales/metabolismo , Factores Sexuales
7.
Neurosci Lett ; 567: 35-9, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24680850

RESUMEN

Chlorogenic acid (CGA) is one of the most abundant polyphenol compounds in the human diet. Recently, it is demonstrated to have potent antinociceptive effect. However, little is understood about the mechanism underlying CGA analgesia. Here, we have found that CGA can exert an inhibitory effect on the functional activity of native acid-sensing ion channels (ASICs) in rat dorsal root ganglion (DRG) neurons. First, CGA decreased the peak amplitude of proton-gated currents mediated by ASICs in a concentration-dependent manner. Second, CGA shifted the proton concentration-response curve downward, with a decrease of 41.76 ± 8.65% in the maximum current response to protons but with no significant change in the pH0.5 value. Third, CGA altered acidosis-evoked membrane excitability of rat DRG neurons and caused a significant decrease in the amplitude of the depolarization and the number of action potentials induced by acid stimuli. Finally, peripheral administered CGA attenuated nociceptive response to intraplantar injection of acetic acid in rats. ASICs are distributed in peripheral sensory neurons and participate in nociception. Our findings CGA inhibition of native ASICs indicated that CGA may exert analgesic action by modulating ASICs in the primary afferent neurons, which revealed a novel cellular and molecular mechanism underlying CGA analgesia.


Asunto(s)
Bloqueadores del Canal Iónico Sensible al Ácido/farmacología , Canales Iónicos Sensibles al Ácido/fisiología , Analgésicos/farmacología , Ácido Clorogénico/farmacología , Ganglios Espinales/efectos de los fármacos , Células Receptoras Sensoriales/efectos de los fármacos , Ácido Acético , Potenciales de Acción , Animales , Membrana Celular/fisiología , Ganglios Espinales/citología , Ganglios Espinales/fisiología , Activación del Canal Iónico , Masculino , Nocicepción/efectos de los fármacos , Nocicepción/fisiología , Dolor/inducido químicamente , Dolor/fisiopatología , Técnicas de Placa-Clamp , Ratas Sprague-Dawley , Células Receptoras Sensoriales/fisiología
8.
Eur J Pharmacol ; 731: 50-7, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24642360

RESUMEN

Acid-sensing ion channels (ASICs), a family of proton-gated cation channels, are believed to mediate pain caused by extracellular acidification. Gastrodin is a main bioactive constituent of the traditional herbal Gastrodia elata Blume, which has been widely used in Oriental countries for centuries. As an analgesic, gastrodin has been used clinically to treat pain such as migraine and headache. However, the mechanisms underlying analgesic action of gastrodin are still poorly understood. Here, we have found that gastrodin inhibited the activity of native ASICs in rat dorsal root ganglion (DRG) neurons. Gastrodin dose-dependently inhibited proton-gated currents mediated by ASICs. Gastrodin shifted the proton concentration-response curve downwards, with a decrease of 36.92 ± 6.23% in the maximum current response but with no significant change in the pH0.5 value. Moreover, gastrodin altered acid-evoked membrane excitability of rat DRG neurons and caused a significant decrease in the amplitude of the depolarization and the number of action potentials induced by acid stimuli. Finally, peripheral applied gastrodin relieved pain evoked by intraplantar injection of acetic acid in rats. Our results indicate that gastrodin can inhibit the activity of ASICs in the primary sensory neurons, which provided a novel mechanism underlying analgesic action of gastrodin.


Asunto(s)
Bloqueadores del Canal Iónico Sensible al Ácido/farmacología , Canales Iónicos Sensibles al Ácido/metabolismo , Alcoholes Bencílicos/farmacología , Ganglios Espinales/citología , Glucósidos/farmacología , Células Receptoras Sensoriales/citología , Células Receptoras Sensoriales/efectos de los fármacos , Animales , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Relación Dosis-Respuesta a Droga , Fenómenos Electrofisiológicos/efectos de los fármacos , Formaldehído/farmacología , Masculino , Nocicepción/efectos de los fármacos , Protones , Ratas , Ratas Sprague-Dawley
9.
Brain Res ; 1554: 12-20, 2014 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-24491633

RESUMEN

Extracellular acidosis is a common feature in pain-generating pathological conditions. Acid-sensing ion channels (ASICs), pH sensors, are distributed in peripheral sensory neurons and participate in nociception. Morphine exerts potent analgesic effects through the activation of opioid receptors for various pain conditions. A cross-talk between ASICs and opioid receptors in peripheral sensory neurons has not been shown so far. Here, we have found that morphine inhibits the activity of native ASICs in rat dorsal root ganglion (DRG) neurons. Morphine dose-dependently inhibited proton-gated currents mediated by ASICs in the presence of the TRPV1 inhibitor capsazepine. Morphine shifted the proton concentration-response curve downwards, with a decrease of 51.4±3.8% in the maximum current response but with no significant change in the pH0.5 value. Another µ-opioid receptor agonist DAMGO induced a similar decrease in ASIC currents compared with morphine. The morphine inhibition of ASIC currents was blocked by naloxone, a specific opioid receptor antagonist. Pretreatment of forskolin, an adenylyl cyclase activator, or the addition of cAMP reversed the inhibitory effect of morphine. Moreover, morphine altered acid-evoked excitability of rat DRG neurons and decreased the number of action potentials induced by acid stimuli. Finally, peripheral applied morphine relieved pain evoked by intraplantar of acetic acid in rats. Our results indicate that morphine can inhibit the activity of ASICs via µ-opioid receptor and cAMP dependent signal pathway. These observations demonstrate a cross-talk between ASICs and opioid receptors in peripheral sensory neurons, which was a novel analgesic mechanism of morphine.


Asunto(s)
Bloqueadores del Canal Iónico Sensible al Ácido/farmacología , Canales Iónicos Sensibles al Ácido/metabolismo , Ganglios Espinales/efectos de los fármacos , Morfina/farmacología , Neuronas/efectos de los fármacos , Ácido Acético , Bloqueadores del Canal Iónico Sensible al Ácido/administración & dosificación , Potenciales de Acción/efectos de los fármacos , Analgésicos Opioides/administración & dosificación , Analgésicos Opioides/farmacología , Animales , Capsaicina/análogos & derivados , Capsaicina/farmacología , Relación Dosis-Respuesta a Droga , Encefalina Ala(2)-MeFe(4)-Gli(5)/farmacología , Ganglios Espinales/fisiología , Técnicas In Vitro , Masculino , Morfina/administración & dosificación , Naloxona/farmacología , Antagonistas de Narcóticos/farmacología , Neuronas/fisiología , Nocicepción/efectos de los fármacos , Dolor/tratamiento farmacológico , Dolor/fisiopatología , Protones , Ratas , Ratas Sprague-Dawley , Receptores Opioides mu/agonistas , Receptores Opioides mu/antagonistas & inhibidores , Receptores Opioides mu/metabolismo , Canales Catiónicos TRPV/antagonistas & inhibidores , Canales Catiónicos TRPV/metabolismo
10.
Br J Pharmacol ; 171(12): 3065-76, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24641084

RESUMEN

BACKGROUND AND PURPOSE: A growing number of studies have demonstrated that oxytocin (OT) plays an analgesic role in modulation of nociception and pain. Most work to date has focused on the central mechanisms of OT analgesia, but little is known about whether peripheral mechanisms are also involved. Acid-sensing ion channels (ASICs) are distributed in peripheral sensory neurons and participate in nociception. Here, we investigated the effects of OT on the activity of ASICs in dorsal root ganglion (DRG) neurons. EXPERIMENTAL APPROACH: Electrophysiological experiments were performed on neurons from rat DRG. Nociceptive behaviour was induced by acetic acid in rats and mice lacking vasopressin, V1A receptors. KEY RESULTS: OT inhibited the functional activity of native ASICs. Firstly, OT dose-dependently decreased the amplitude of ASIC currents in DRG neurons. Secondly, OT inhibition of ASIC currents was mimicked by arginine vasopressin (AVP) and completely blocked by the V1A receptor antagonist SR49059, but not by the OT receptor antagonist L-368899. Thirdly, OT altered acidosis-evoked membrane excitability of DRG neurons and significantly decreased the amplitude of the depolarization and number of action potentials induced by acid stimuli. Finally, peripherally administered OT or AVP inhibited nociceptive responses to intraplantar injection of acetic acid in rats. Both OT and AVP also induced an analgesic effect on acidosis-evoked pain in wild-type mice, but not in V1A receptor knockout mice. CONCLUSIONS AND IMPLICATIONS: These results reveal a novel peripheral mechanism for the analgesic effect of OT involving the modulation of native ASICs in primary sensory neurons mediated by V1A receptors.


Asunto(s)
Bloqueadores del Canal Iónico Sensible al Ácido/farmacología , Canales Iónicos Sensibles al Ácido/efectos de los fármacos , Analgésicos/farmacología , Ganglios Espinales/efectos de los fármacos , Oxitocina/farmacología , Receptores de Vasopresinas/efectos de los fármacos , Células Receptoras Sensoriales/efectos de los fármacos , Ácido Acético , Canales Iónicos Sensibles al Ácido/metabolismo , Potenciales de Acción , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Ganglios Espinales/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Nocicepción/efectos de los fármacos , Dolor Nociceptivo/inducido químicamente , Dolor Nociceptivo/prevención & control , Dolor Nociceptivo/psicología , Ratas Sprague-Dawley , Receptores de Vasopresinas/genética , Receptores de Vasopresinas/metabolismo , Células Receptoras Sensoriales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA