Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Biomed Mater Res B Appl Biomater ; 107(5): 1384-1392, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30281908

RESUMEN

Indocyanine green (ICG) is the only FDA-approved near-infrared dye and it is currently used clinically for diagnostic applications. However, there is significant interest in using ICG for triggered drug delivery applications and heat ablation therapy. Unfortunately, free ICG has a short half-life in vivo and is rapidly cleared from circulation. Liposomes have been frequently used to improve ICG's stability and overall time of effectiveness in vivo, but they have limited stability due to the susceptibility of phospholipids to hydrolysis and oxidation. In this study, nonphospholipid liposomes were used to encapsulate ICG, and the resulting liposomes were characterized for size, encapsulation efficiency, stability, and photothermal response. Using the thin-film hydration method, an ICG encapsulation efficiency of 54% was achieved, and the liposomes were stable for up to 12 weeks, with detectable levels of encapsulated ICG up to week 4. Additionally, ICG-loaded liposomes were capable of rapidly producing a significant photothermal response upon exposure to near-infrared light, and this photothermal response was able to induce changes in the mechanical properties of thermally responsive hydrogels. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1384-1392, 2019.


Asunto(s)
Colesterol/química , Hipertermia Inducida , Verde de Indocianina/química , Ácido Palmítico/química , Fototerapia , Liposomas
2.
Drug Deliv Transl Res ; 5(6): 611-24, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26423655

RESUMEN

The need for temporal-spatial control over the release of biologically active molecules has motivated efforts to engineer novel drug delivery-on-demand strategies actuated via light irradiation. Many systems, however, have been limited to in vitro proof-of-concept due to biocompatibility issues with the photo-responsive moieties or the light wavelength, intensity, and duration. To overcome these limitations, this paper describes a light actuated drug delivery-on-demand strategy that uses visible and near-infrared (NIR) light and biocompatible chromophores: cardiogreen, methylene blue, and riboflavin. All three chromophores are capable of significant photothermal reaction upon exposure to NIR and visible light, and the amount of temperature change is dependent upon light intensity, wavelength as well as chromophore concentration. Pulsatile release of bovine serum albumin (BSA) from thermally responsive hydrogels was achieved over 4 days. These findings have the potential to translate light-actuated drug delivery-on-demand systems from the bench to clinical applications that require explicit control over the presentation of biologically active molecules.


Asunto(s)
Sistemas de Liberación de Medicamentos , Sistemas de Liberación de Medicamentos/métodos , Hidrogeles , Verde de Indocianina , Rayos Infrarrojos , Luz , Azul de Metileno , Riboflavina , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA