Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Nature ; 618(7964): 394-401, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37225996

RESUMEN

The endoplasmic reticulum (ER) undergoes continuous remodelling via a selective autophagy pathway, known as ER-phagy1. ER-phagy receptors have a central role in this process2, but the regulatory mechanism remains largely unknown. Here we report that ubiquitination of the ER-phagy receptor FAM134B within its reticulon homology domain (RHD) promotes receptor clustering and binding to lipidated LC3B, thereby stimulating ER-phagy. Molecular dynamics (MD) simulations showed how ubiquitination perturbs the RHD structure in model bilayers and enhances membrane curvature induction. Ubiquitin molecules on RHDs mediate interactions between neighbouring RHDs to form dense receptor clusters that facilitate the large-scale remodelling of lipid bilayers. Membrane remodelling was reconstituted in vitro with liposomes and ubiquitinated FAM134B. Using super-resolution microscopy, we discovered FAM134B nanoclusters and microclusters in cells. Quantitative image analysis revealed a ubiquitin-mediated increase in FAM134B oligomerization and cluster size. We found that the E3 ligase AMFR, within multimeric ER-phagy receptor clusters, catalyses FAM134B ubiquitination and regulates the dynamic flux of ER-phagy. Our results show that ubiquitination enhances RHD functions via receptor clustering, facilitates ER-phagy and controls ER remodelling in response to cellular demands.


Asunto(s)
Autofagia , Estrés del Retículo Endoplásmico , Retículo Endoplásmico , Ubiquitinación , Autofagia/fisiología , Retículo Endoplásmico/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ubiquitinas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Receptores del Factor Autocrino de Motilidad/metabolismo
2.
Nature ; 618(7964): 402-410, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37225994

RESUMEN

Membrane-shaping proteins characterized by reticulon homology domains play an important part in the dynamic remodelling of the endoplasmic reticulum (ER). An example of such a protein is FAM134B, which can bind LC3 proteins and mediate the degradation of ER sheets through selective autophagy (ER-phagy)1. Mutations in FAM134B result in a neurodegenerative disorder in humans that mainly affects sensory and autonomic neurons2. Here we report that ARL6IP1, another ER-shaping protein that contains a reticulon homology domain and is associated with sensory loss3, interacts with FAM134B and participates in the formation of heteromeric multi-protein clusters required for ER-phagy. Moreover, ubiquitination of ARL6IP1 promotes this process. Accordingly, disruption of Arl6ip1 in mice causes an expansion of ER sheets in sensory neurons that degenerate over time. Primary cells obtained from Arl6ip1-deficient mice or from patients display incomplete budding of ER membranes and severe impairment of ER-phagy flux. Therefore, we propose that the clustering of ubiquitinated ER-shaping proteins facilitates the dynamic remodelling of the ER during ER-phagy and is important for neuronal maintenance.


Asunto(s)
Autofagia , Estrés del Retículo Endoplásmico , Retículo Endoplásmico , Proteínas Ubiquitinadas , Ubiquitinación , Animales , Humanos , Ratones , Autofagia/genética , Retículo Endoplásmico/metabolismo , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Ubiquitinadas/metabolismo , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/patología , Membranas Intracelulares/metabolismo
3.
J Neurosci ; 44(6)2024 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-38129132

RESUMEN

The coordinated action of a plethora of factors is required for the organization and dynamics of membranous structures critically underlying the development and function of cells, organs, and organisms. The evolutionary acquisition of additional amino acid motifs allows for expansion and/or specification of protein functions. We identify a thus far unrecognized motif specific for chordata EHBP1 proteins and demonstrate that this motif is critically required for interaction with syndapin I, an F-BAR domain-containing, membrane-shaping protein predominantly expressed in neurons. Gain-of-function and loss-of-function studies in rat primary hippocampal neurons (of mixed sexes) unraveled that EHBP1 has an important role in neuromorphogenesis. Surprisingly, our analyses uncovered that this newly identified function of EHBP1 did not require the domain responsible for Rab GTPase binding but was strictly dependent on EHBP1's syndapin I binding interface and on the presence of syndapin I in the developing neurons. These findings were underscored by temporally and spatially remarkable overlapping dynamics of EHBP1 and syndapin I at nascent dendritic branch sites. In addition, rescue experiments demonstrated the necessity of two additional EHBP1 domains for dendritic arborization, the C2 and CH domains. Importantly, the additionally uncovered critical involvement of the actin nucleator Cobl in EHBP1 functions suggested that not only static association with F-actin via EHBP1's CH domain is important for dendritic arbor formation but also actin nucleation. Syndapin interactions organize ternary protein complexes composed of EHBP1, syndapin I, and Cobl, and our functional data show that only together these factors give rise to proper cell shape during neuronal development.


Asunto(s)
Actinas , Proteínas de Microfilamentos , Ratas , Animales , Actinas/metabolismo , Proteínas de Microfilamentos/metabolismo , Citoesqueleto de Actina/metabolismo , Neuronas/metabolismo , Unión Proteica
4.
PLoS Biol ; 19(12): e3001399, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34898601

RESUMEN

Ischemic stroke is a major cause of death and long-term disability. We demonstrate that middle cerebral artery occlusion (MCAO) in mice leads to a strong decline in dendritic arborization of penumbral neurons. These defects were subsequently repaired by an ipsilateral recovery process requiring the actin nucleator Cobl. Ischemic stroke and excitotoxicity, caused by calpain-mediated proteolysis, significantly reduced Cobl levels. In an apparently unique manner among excitotoxicity-affected proteins, this Cobl decline was rapidly restored by increased mRNA expression and Cobl then played a pivotal role in poststroke dendritic arbor repair in peri-infarct areas. In Cobl knockout (KO) mice, the dendritic repair window determined to span day 2 to 4 poststroke in wild-type (WT) strikingly passed without any dendritic regrowth. Instead, Cobl KO penumbral neurons of the primary motor cortex continued to show the dendritic impairments caused by stroke. Our results thereby highlight a powerful poststroke recovery process and identified causal molecular mechanisms critical during poststroke repair.


Asunto(s)
Accidente Cerebrovascular Isquémico/metabolismo , Proteínas de Microfilamentos/metabolismo , Plasticidad Neuronal/fisiología , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animales , Proteínas del Citoesqueleto/metabolismo , Expresión Génica/genética , Infarto de la Arteria Cerebral Media , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/fisiología , Neuronas/metabolismo , Neuronas/fisiología
5.
J Neurosci ; 2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35879097

RESUMEN

Glycine receptor-mediated inhibitory neurotransmission is key for spinal cord function. Recent observations suggested that by largely elusive mechanisms also glycinergic synapses display synaptic plasticity. We imaged receptor fields at ultra-high resolution at freeze-fractured membranes, tracked surface and internalized glycine receptors (GlyR) and studied differential regulations of GlyRß interactions with the scaffold protein gephyrin and the F-BAR domain protein syndapin I and thereby reveal key principles of this process. S403 phosphorylation of GlyRß, known to be triggered by synaptic signaling, caused a decoupling from gephyrin scaffolds but simultaneously promoted association of syndapin I with GlyRß. In line, kainate-treatments used to trigger rearrangements of glycine receptors in murine syndapin I KO spinal cords (mixed sex) showed even more severe receptor field fragmentation than already observed in untreated syndapin I KO spinal cords. Syndapin I KO furthermore resulted in more dispersed receptors and increased receptor mobility also pointing out an important contribution of syndapin I in the organization of GlyRß fields. Strikingly, syndapin I KO also led to a complete disruption of kainate-induced GlyRß internalization. Accompanying quantitative ultra-high resolution studies in dissociated spinal cord neurons strongly suggested that the observed defects in GlyR internalization observed in syndapin I KO spinal cords are directly caused by syndapin I deficiency within murine spinal cord neurons. Together our results unveiled important mechanisms organizing and altering glycine receptor fields during both steady-state and particularly upon kainate-induced synaptic rearrangement - principles organizing and fine-tuning synaptic efficacy and plasticity of glycinergic synapses in the spinal cord.SIGNIFICANCE STATEMENTInitial observations suggested that also glycinergic synapses - key for spinal cord and brain stem functions - may display some form of synaptic plasticity. Imaging receptor fields at ultra-high resolution at freeze-fractured membranes, tracking surface and internalized glycine receptors (GlyR) and studying regulations of GlyRß interactions we here reveal key principles of these kainate-inducible adaptations. A switch from gephyrin-mediated receptor scaffolding to syndapin I-mediated GlyRß scaffolding and internalization allows for modulating synaptic receptor availability. In line, kainate-induced GlyRß internalization was completely disrupted and GlyRß receptor fields were distorted upon syndapin I KO. These results unveiled important mechanisms during both steady-state and kainate-induced alterations of synaptic GlyR fields - principles underlying synaptic efficacy and plasticity of synapses in the spinal cord.

6.
Cell Mol Life Sci ; 79(6): 286, 2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35534740

RESUMEN

Endocytosis is controlled by a well-orchestrated molecular machinery, where the individual players as well as their precise interactions are not fully understood. We now show that syndapin I/PACSIN 1 is expressed in pancreatic ß cells and that its knockdown abrogates ß cell endocytosis leading to disturbed plasma membrane protein homeostasis, as exemplified by an elevated density of L-type Ca2+ channels. Intriguingly, inositol hexakisphosphate (InsP6) activates casein kinase 2 (CK2) that phosphorylates syndapin I/PACSIN 1, thereby promoting interactions between syndapin I/PACSIN 1 and neural Wiskott-Aldrich syndrome protein (N-WASP) and driving ß cell endocytosis. Dominant-negative interference with endogenous syndapin I/PACSIN 1 protein complexes, by overexpression of the syndapin I/PACSIN 1 SH3 domain, decreases InsP6-stimulated endocytosis. InsP6 thus promotes syndapin I/PACSIN 1 priming by CK2-dependent phosphorylation, which endows the syndapin I/PACSIN 1 SH3 domain with the capability to interact with the endocytic machinery and thereby initiate endocytosis, as exemplified in ß cells.


Asunto(s)
Proteínas del Citoesqueleto , Ácido Fítico , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas del Citoesqueleto/metabolismo , Endocitosis/fisiología , Fosforilación
7.
J Neurosci ; 40(25): 4954-4969, 2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-32354853

RESUMEN

Glycine receptors (GlyRs) are the major mediators of fast synaptic inhibition in the adult human spinal cord and brainstem. Hereditary mutations to GlyRs can lead to the rare, but potentially fatal, neuromotor disorder hyperekplexia. Most mutations located in the large intracellular domain (TM3-4 loop) of the GlyRα1 impair surface expression levels of the receptors. The novel GLRA1 mutation P366L, located in the TM3-4 loop, showed normal surface expression but reduced chloride currents, and accelerated whole-cell desensitization observed in whole-cell recordings. At the single-channel level, we observed reduced unitary conductance accompanied by spontaneous opening events in the absence of extracellular glycine. Using peptide microarrays and tandem MS-based analysis methods, we show that the proline-rich stretch surrounding P366 mediates binding to syndapin I, an F-BAR domain protein involved in membrane remodeling. The disruption of the noncanonical Src homology 3 recognition motif by P366L reduces syndapin I binding. These data suggest that the GlyRα1 subunit interacts with intracellular binding partners and may therefore play a role in receptor trafficking or synaptic anchoring, a function thus far only ascribed to the GlyRß subunit. Hence, the P366L GlyRα1 variant exhibits a unique set of properties that cumulatively affect GlyR functionality and thus might explain the neuropathological mechanism underlying hyperekplexia in the mutant carriers. P366L is the first dominant GLRA1 mutation identified within the GlyRα1 TM3-4 loop that affects GlyR physiology without altering protein expression at the whole-cell and surface levels.SIGNIFICANCE STATEMENT We show that the intracellular domain of the inhibitory glycine receptor α1 subunit contributes to trafficking and synaptic anchoring. A proline-rich stretch in this receptor domain forms a noncanonical recognition motif important for the interaction with syndapin I (PACSIN1). The disruption of this motif, as present in a human patient with hyperekplexia led to impaired syndapin I binding. Functional analysis revealed that the altered proline-rich stretch determines several functional physiological parameters of the ion channel (e.g., faster whole-cell desensitization) reduced unitary conductance and spontaneous opening events. Thus, the proline-rich stretch from the glycine receptor α1 subunit represents a multifunctional intracellular protein motif.


Asunto(s)
Receptores de Glicina/genética , Receptores de Glicina/metabolismo , Síndrome de la Persona Rígida/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencias de Aminoácidos , Animales , Humanos , Mutación , Unión Proteica/genética , Estructura Cuaternaria de Proteína , Transporte de Proteínas/genética , Receptores de Glicina/química
8.
Nature ; 522(7556): 354-8, 2015 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-26040720

RESUMEN

The endoplasmic reticulum (ER) is the largest intracellular endomembrane system, enabling protein and lipid synthesis, ion homeostasis, quality control of newly synthesized proteins and organelle communication. Constant ER turnover and modulation is needed to meet different cellular requirements and autophagy has an important role in this process. However, its underlying regulatory mechanisms remain unexplained. Here we show that members of the FAM134 reticulon protein family are ER-resident receptors that bind to autophagy modifiers LC3 and GABARAP, and facilitate ER degradation by autophagy ('ER-phagy'). Downregulation of FAM134B protein in human cells causes an expansion of the ER, while FAM134B overexpression results in ER fragmentation and lysosomal degradation. Mutant FAM134B proteins that cause sensory neuropathy in humans are unable to act as ER-phagy receptors. Consistently, disruption of Fam134b in mice causes expansion of the ER, inhibits ER turnover, sensitizes cells to stress-induced apoptotic cell death and leads to degeneration of sensory neurons. Therefore, selective ER-phagy via FAM134 proteins is indispensable for mammalian cell homeostasis and controls ER morphology and turnover in mice and humans.


Asunto(s)
Autofagia/fisiología , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Apoptosis , Proteínas Reguladoras de la Apoptosis , Biomarcadores/metabolismo , Línea Celular , Retículo Endoplásmico/química , Femenino , Eliminación de Gen , Humanos , Péptidos y Proteínas de Señalización Intracelular , Lisosomas/metabolismo , Masculino , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Neoplasias/deficiencia , Proteínas de Neoplasias/genética , Fagosomas/metabolismo , Unión Proteica , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/patología
9.
Cereb Cortex ; 30(8): 4306-4324, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32147734

RESUMEN

Schizophrenia is associated with cognitive and behavioral dysfunctions thought to reflect imbalances in neurotransmission systems. Recent screenings suggested that lack of (functional) syndapin I (PACSIN1) may be linked to schizophrenia. We therefore studied syndapin I KO mice to address the suggested causal relationship to schizophrenia and to analyze associated molecular, cellular, and neurophysiological defects. Syndapin I knockout (KO) mice developed schizophrenia-related behaviors, such as hyperactivity, reduced anxiety, reduced response to social novelty, and an exaggerated novel object response and exhibited defects in dendritic arborization in the cortex. Neuromorphogenic deficits were also observed for a schizophrenia-associated syndapin I mutant in cultured neurons and coincided with a lack of syndapin I-mediated membrane recruitment of cytoskeletal effectors. Syndapin I KO furthermore caused glutamatergic hypofunctions. Syndapin I regulated both AMPAR and NMDAR availabilities at synapses during basal synaptic activity and during synaptic plasticity-particularly striking were a complete lack of long-term potentiation and defects in long-term depression in syndapin I KO mice. These synaptic plasticity defects coincided with alterations of postsynaptic actin dynamics, synaptic GluA1 clustering, and GluA1 mobility. Both GluA1 and GluA2 were not appropriately internalized. Summarized, syndapin I KO led to schizophrenia-like behavior, and our analyses uncovered associated molecular and cellular mechanisms.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Encéfalo/metabolismo , Plasticidad Neuronal/fisiología , Esquizofrenia/metabolismo , Animales , Conducta Animal/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
10.
Biochem Soc Trans ; 48(1): 137-146, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-32104881

RESUMEN

The formation of caveolae, bulb-shaped plasma membrane invaginations, requires the coordinated action of distinct lipid-interacting and -shaping proteins. The interdependence of caveolar structure and function has evoked substantial scientific interest given the association of human diseases with caveolar dysfunction. Model systems deficient of core components of caveolae, caveolins or cavins, did not allow for an explicit attribution of observed functional defects to the requirement of caveolar invagination as they lack both invaginated caveolae and caveolin proteins. Knockdown studies in cultured cells and recent knockout studies in mice identified an additional family of membrane-shaping proteins crucial for caveolar formation, syndapins (PACSINs) - BAR domain superfamily proteins characterized by crescent-shaped membrane binding interfaces recognizing and inducing distinct curved membrane topologies. Importantly, syndapin loss-of-function resulted exclusively in impairment of caveolar invagination without a reduction in caveolin or cavin at the plasma membrane, thereby allowing the specific role of the caveolar invagination to be unveiled. Muscle cells of syndapin III KO mice showed severe reductions of caveolae reminiscent of human caveolinopathies and were more vulnerable to membrane damage upon changes in membrane tensions. Consistent with the lack of syndapin III-dependent invaginated caveolae providing mechanoprotection by releasing membrane reservoirs through caveolar flattening, physical exercise of syndapin III KO mice resulted in pathological defects reminiscent of the clinical symptoms of human myopathies associated with caveolin 3 mutation suggesting that the ability of muscular caveolae to respond to mechanical forces is a key physiological process.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Cardiomiopatías/fisiopatología , Caveolas/metabolismo , Enfermedades Musculares/fisiopatología , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Caveolinas/genética , Caveolinas/metabolismo , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Ratones , Ratones Noqueados , Mutación , Células 3T3 NIH
11.
Cereb Cortex ; 29(10): 4263-4276, 2019 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-30541023

RESUMEN

Brain functions are extremely sensitive to pH changes because of the pH-dependence of proteins involved in neuronal excitability and synaptic transmission. Here, we show that the Na+/H+ exchanger Nhe1, which uses the Na+ gradient to extrude H+, is expressed at both inhibitory and excitatory presynapses. We disrupted Nhe1 specifically in mice either in Emx1-positive glutamatergic neurons or in parvalbumin-positive cells, mainly GABAergic interneurons. While Nhe1 disruption in excitatory neurons had no effect on overall network excitability, mice with disruption of Nhe1 in parvalbumin-positive neurons displayed epileptic activity. From our electrophysiological analyses in the CA1 of the hippocampus, we conclude that the disruption in parvalbumin-positive neurons impairs the release of GABA-loaded vesicles, but increases the size of GABA quanta. The latter is most likely an indirect pH-dependent effect, as Nhe1 was not expressed in purified synaptic vesicles itself. Conclusively, our data provide first evidence that Nhe1 affects network excitability via modulation of inhibitory interneurons.


Asunto(s)
Región CA1 Hipocampal/fisiología , Potenciales de la Membrana , Terminales Presinápticos/fisiología , Intercambiador 1 de Sodio-Hidrógeno/fisiología , Ácido gamma-Aminobutírico/fisiología , Animales , Epilepsia/fisiopatología , Femenino , Neuronas GABAérgicas/fisiología , Ácido Glutámico/metabolismo , Interneuronas/fisiología , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Terminales Presinápticos/metabolismo , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo , Ácido gamma-Aminobutírico/metabolismo
12.
Mol Biol Evol ; 34(6): 1463-1478, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28333212

RESUMEN

In the development of the human brain, human-specific genes are considered to play key roles, conferring its unique advantages and vulnerabilities. At the time of Homo lineage divergence from Australopithecus, SRGAP2C gradually emerged through a process of serial duplications and mutagenesis from ancestral SRGAP2A (3.4-2.4 Ma). Remarkably, ectopic expression of SRGAP2C endows cultured mouse brain cells, with human-like characteristics, specifically, increased dendritic spine length and density. To understand the molecular mechanisms underlying this change in neuronal morphology, we determined the structure of SRGAP2A and studied the interplay between SRGAP2A and SRGAP2C. We found that: 1) SRGAP2A homo-dimerizes through a large interface that includes an F-BAR domain, a newly identified F-BAR extension (Fx), and RhoGAP-SH3 domains. 2) SRGAP2A has an unusual inverse geometry, enabling associations with lamellipodia and dendritic spine heads in vivo, and scaffolding of membrane protrusions in cell culture. 3) As a result of the initial partial duplication event (∼3.4 Ma), SRGAP2C carries a defective Fx-domain that severely compromises its solubility and membrane-scaffolding ability. Consistently, SRGAP2A:SRAGP2C hetero-dimers form, but are insoluble, inhibiting SRGAP2A activity. 4) Inactivation of SRGAP2A is sensitive to the level of hetero-dimerization with SRGAP2C. 5) The primal form of SRGAP2C (P-SRGAP2C, existing between ∼3.4 and 2.4 Ma) is less effective in hetero-dimerizing with SRGAP2A than the modern SRGAP2C, which carries several substitutions (from ∼2.4 Ma). Thus, the genetic mutagenesis phase contributed to modulation of SRGAP2A's inhibition of neuronal expansion, by introducing and improving the formation of inactive SRGAP2A:SRGAP2C hetero-dimers, indicating a stepwise involvement of SRGAP2C in human evolutionary history.


Asunto(s)
Proteínas Activadoras de GTPasa/química , Proteínas Activadoras de GTPasa/genética , Encéfalo/crecimiento & desarrollo , Encéfalo/fisiología , Movimiento Celular/genética , Movimiento Celular/fisiología , Cristalografía por Rayos X/métodos , Espinas Dendríticas , Evolución Molecular , Proteínas Activadoras de GTPasa/metabolismo , Humanos , Neuronas/metabolismo , Estructura Terciaria de Proteína/genética , Seudópodos , Relación Estructura-Actividad
13.
Biochem Biophys Res Commun ; 506(2): 355-360, 2018 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-30093111

RESUMEN

Actin filament formation plays a pivotal role in the development, regeneration and modulation of the morphologies and physiological functions of subcellular compartments and entire cells. All of these processes require tight temporal and spatial control of F-actin assembly. Recent work has shed new light on the control of actin filament formation by Ca2+ as very fast, transient messenger allowing for defined responses to signal intensities spanning several orders of magnitude. Recent discoveries highlight that a small but rapidly growing set of actin nucleators and related proteins, i.e. factors that have the power to promote the formation of new actin filaments in cells, are tightly controlled by the Ca2+ sensor protein CaM. We here review the cellular functions and the molecular mechanisms that couple Ca2+ signaling to the cytoskeletal functions of these factors. This set of proteins currently includes one actin nucleator of the formin family (INF2), the WH2 domain-based actin nucleator Cobl and its ancestor protein Cobl-like as well as fesselin/synaptopodin-2/myopodin and myelin basic protein (MBP). Considering the mechanistic principles of Ca2+ control of actin filament formation unveiled thus far and the diverse cell biological processes involving Ca2+ signaling it is obvious that our understanding of the cell biological crosstalk of Ca2+ transients with the in part highly specialized actin cytoskeletal structures observed in different cell types is only at its infancy.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Calcio/metabolismo , Calmodulina/metabolismo , Proteínas de Microfilamentos/metabolismo , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/ultraestructura , Actinas/química , Actinas/genética , Animales , Señalización del Calcio , Calmodulina/genética , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Forminas , Regulación de la Expresión Génica , Humanos , Transporte Iónico , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Microfilamentos/genética , Proteína Básica de Mielina/genética , Proteína Básica de Mielina/metabolismo , ATPasas Transportadoras de Calcio de la Membrana Plasmática/genética
14.
PLoS Biol ; 13(9): e1002233, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26334624

RESUMEN

Actin nucleation triggers the formation of new actin filaments and has the power to shape cells but requires tight control in order to bring about proper morphologies. The regulation of the members of the novel class of WASP Homology 2 (WH2) domain-based actin nucleators, however, thus far has largely remained elusive. Our study reveals signal cascades and mechanisms regulating Cordon-Bleu (Cobl). Cobl plays some, albeit not fully understood, role in early arborization of neurons and nucleates actin by a mechanism that requires a combination of all three of its actin monomer-binding WH2 domains. Our experiments reveal that Cobl is regulated by Ca2+ and multiple, direct associations of the Ca2+ sensor Calmodulin (CaM). Overexpression analyses and rescue experiments of Cobl loss-of-function phenotypes with Cobl mutants in primary neurons and in tissue slices demonstrated the importance of CaM binding for Cobl's functions. Cobl-induced dendritic branch initiation was preceded by Ca2+ signals and coincided with local F-actin and CaM accumulations. CaM inhibitor studies showed that Cobl-mediated branching is strictly dependent on CaM activity. Mechanistic studies revealed that Ca2+/CaM modulates Cobl's actin binding properties and furthermore promotes Cobl's previously identified interactions with the membrane-shaping F-BAR protein syndapin I, which accumulated with Cobl at nascent dendritic protrusion sites. The findings of our study demonstrate a direct regulation of an actin nucleator by Ca2+/CaM and reveal that the Ca2+/CaM-controlled molecular mechanisms we discovered are crucial for Cobl's cellular functions. By unveiling the means of Cobl regulation and the mechanisms, by which Ca2+/CaM signals directly converge on a cellular effector promoting actin filament formation, our work furthermore sheds light on how local Ca2+ signals steer and power branch initiation during early arborization of nerve cells-a key process in neuronal network formation.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Señalización del Calcio , Calmodulina/metabolismo , Proteínas de Microfilamentos/metabolismo , Plasticidad Neuronal , Actinas/metabolismo , Animales , Células COS , Proteínas Portadoras/metabolismo , Chlorocebus aethiops , Proteínas del Citoesqueleto , Células HEK293 , Humanos , Masculino , Ratones , Ratas
15.
PLoS Genet ; 11(8): e1005454, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26284655

RESUMEN

Hereditary spastic paraplegia (HSP) is characterized by a dying back degeneration of corticospinal axons which leads to progressive weakness and spasticity of the legs. SPG11 is the most common autosomal-recessive form of HSPs and is caused by mutations in SPG11. A recent in vitro study suggested that Spatacsin, the respective gene product, is needed for the recycling of lysosomes from autolysosomes, a process known as autophagic lysosome reformation. The relevance of this observation for hereditary spastic paraplegia, however, has remained unclear. Here, we report that disruption of Spatacsin in mice indeed causes hereditary spastic paraplegia-like phenotypes with loss of cortical neurons and Purkinje cells. Degenerating neurons accumulate autofluorescent material, which stains for the lysosomal protein Lamp1 and for p62, a marker of substrate destined to be degraded by autophagy, and hence appears to be related to autolysosomes. Supporting a more generalized defect of autophagy, levels of lipidated LC3 are increased in Spatacsin knockout mouse embryonic fibrobasts (MEFs). Though distinct parameters of lysosomal function like processing of cathepsin D and lysosomal pH are preserved, lysosome numbers are reduced in knockout MEFs and the recovery of lysosomes during sustained starvation impaired consistent with a defect of autophagic lysosome reformation. Because lysosomes are reduced in cortical neurons and Purkinje cells in vivo, we propose that the decreased number of lysosomes available for fusion with autophagosomes impairs autolysosomal clearance, results in the accumulation of undegraded material and finally causes death of particularly sensitive neurons like cortical motoneurons and Purkinje cells in knockout mice.


Asunto(s)
Autofagia , Lisosomas/fisiología , Proteínas/genética , Paraplejía Espástica Hereditaria/patología , Animales , Células Cultivadas , Cerebelo/patología , Femenino , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Corteza Motora/patología , Células de Purkinje/patología , Paraplejía Espástica Hereditaria/genética
16.
Am J Hum Genet ; 94(1): 87-94, 2014 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-24239382

RESUMEN

The proper development of neuronal circuits during neuromorphogenesis and neuronal-network formation is critically dependent on a coordinated and intricate series of molecular and cellular cues and responses. Although the cortical actin cytoskeleton is known to play a key role in neuromorphogenesis, relatively little is known about the specific molecules important for this process. Using linkage analysis and whole-exome sequencing on samples from families from the Amish community of Ohio, we have demonstrated that mutations in KPTN, encoding kaptin, cause a syndrome typified by macrocephaly, neurodevelopmental delay, and seizures. Our immunofluorescence analyses in primary neuronal cell cultures showed that endogenous and GFP-tagged kaptin associates with dynamic actin cytoskeletal structures and that this association is lost upon introduction of the identified mutations. Taken together, our studies have identified kaptin alterations responsible for macrocephaly and neurodevelopmental delay and define kaptin as a molecule crucial for normal human neuromorphogenesis.


Asunto(s)
Discapacidades del Desarrollo/genética , Megalencefalia/genética , Proteínas de Microfilamentos/genética , Mutación , Convulsiones/genética , Citoesqueleto de Actina/metabolismo , Secuencia de Aminoácidos , Femenino , Técnica del Anticuerpo Fluorescente , Ligamiento Genético , Humanos , Masculino , Proteínas de Microfilamentos/metabolismo , Datos de Secuencia Molecular , Linaje
17.
J Cell Sci ; 128(17): 3177-85, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26285709

RESUMEN

A plethora of cell biological processes involve modulations of cellular membranes. By using extended lipid-binding interfaces, some proteins have the power to shape membranes by attaching to them. Among such membrane shapers, the superfamily of Bin-Amphiphysin-Rvs (BAR) domain proteins has recently taken center stage. Extensive structural work on BAR domains has revealed a common curved fold that can serve as an extended membrane-binding interface to modulate membrane topologies and has allowed the grouping of the BAR domain superfamily into subfamilies with structurally slightly distinct BAR domain subtypes (N-BAR, BAR, F-BAR and I-BAR). Most BAR superfamily members are expressed in the mammalian nervous system. Neurons are elaborately shaped and highly compartmentalized cells. Therefore, analyses of synapse formation and of postsynaptic reorganization processes (synaptic plasticity) - a basis for learning and memory formation - has unveiled important physiological functions of BAR domain superfamily members. These recent advances, furthermore, have revealed that the functions of BAR domain proteins include different aspects. These functions are influenced by the often complex domain organization of BAR domain proteins. In this Commentary, we review these recent insights and propose to classify BAR domain protein functions into (1) membrane shaping, (2) physical integration, (3) action through signaling components, and (4) suppression of other BAR domain functions.


Asunto(s)
Espinas Dendríticas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Transducción de Señal/fisiología , Sinapsis/metabolismo , Animales , Espinas Dendríticas/genética , Humanos , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Estructura Terciaria de Proteína , Sinapsis/genética
18.
J Cell Sci ; 128(3): 499-515, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25413347

RESUMEN

F-BAR proteins are prime candidates to regulate membrane curvature and dynamics during different developmental processes. Here, we analyzed nostrin, a so-far-unknown Drosophila melanogaster F-BAR protein related to Cip4. Genetic analyses revealed a strong synergism between nostrin and cip4 functions.Whereas single mutant flies are viable and fertile, combined loss of nostrin and cip4 results in reduced viability and fertility. Double mutant escaper flies show enhanced wing polarization defects and females exhibit strong egg chamber encapsulation defects. Live imaging analysis suggests that the observed phenotypes are caused by an impaired turnover of E-cadherin at the membrane. Simultaneous knockdown of Cip4 and Nostrin strongly increases the formation of tubular E-cadherin vesicles at adherens junctions. Cip4 and Nostrin localize at distinct membrane subdomains. Both proteins prefer similar membrane curvatures but seem to form distinct membrane coats and do not heterooligomerize. Our data suggest an important synergistic function of both F-BAR proteins in membrane dynamics. We propose a cooperative recruitment model, in which Cip4 initially promotes membrane invagination and early-actin-based endosomal motility, and Nostrin makes contacts with microtubules through the kinesin Khc-73 for trafficking of recycling endosomes.


Asunto(s)
Cadherinas/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Óvulo/fisiología , Alas de Animales/embriología , Uniones Adherentes/metabolismo , Animales , Proteínas Portadoras/genética , Diferenciación Celular , Línea Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Endocitosis/genética , Endocitosis/fisiología , Endosomas/metabolismo , Células Epiteliales/citología , Cinesinas/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Morfogénesis/fisiología , Transporte de Proteínas/fisiología , Interferencia de ARN , ARN Interferente Pequeño
19.
PLoS Genet ; 9(12): e1003988, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24367272

RESUMEN

Hereditary spastic paraplegias (HSPs) are characterized by progressive weakness and spasticity of the legs because of the degeneration of cortical motoneuron axons. SPG15 is a recessively inherited HSP variant caused by mutations in the ZFYVE26 gene and is additionally characterized by cerebellar ataxia, mental decline, and progressive thinning of the corpus callosum. ZFYVE26 encodes the FYVE domain-containing protein ZFYVE26/SPASTIZIN, which has been suggested to be associated with the newly discovered adaptor protein 5 (AP5) complex. We show that Zfyve26 is broadly expressed in neurons, associates with intracellular vesicles immunopositive for the early endosomal marker EEA1, and co-fractionates with a component of the AP5 complex. As the function of ZFYVE26 in neurons was largely unknown, we disrupted Zfyve26 in mice. Zfyve26 knockout mice do not show developmental defects but develop late-onset spastic paraplegia with cerebellar ataxia confirming that SPG15 is caused by ZFYVE26 deficiency. The morphological analysis reveals axon degeneration and progressive loss of both cortical motoneurons and Purkinje cells in the cerebellum. Importantly, neuron loss is preceded by accumulation of large intraneuronal deposits of membrane-surrounded material, which co-stains with the lysosomal marker Lamp1. A density gradient analysis of brain lysates shows an increase of Lamp1-positive membrane compartments with higher densities in Zfyve26 knockout mice. Increased levels of lysosomal enzymes in brains of aged knockout mice further support an alteration of the lysosomal compartment upon disruption of Zfyve26. We propose that SPG15 is caused by an endolysosomal membrane trafficking defect, which results in endolysosomal dysfunction. This appears to be particularly relevant in neurons with highly specialized neurites such as cortical motoneurons and Purkinje cells.


Asunto(s)
Proteínas Portadoras/genética , Endosomas/metabolismo , Lisosomas/metabolismo , Degeneración Retiniana/genética , Paraplejía Espástica Hereditaria/genética , Animales , Encéfalo/metabolismo , Encéfalo/patología , Proteínas Portadoras/metabolismo , Cuerpo Calloso/metabolismo , Cuerpo Calloso/patología , Modelos Animales de Enfermedad , Endosomas/patología , Humanos , Lisosomas/genética , Ratones , Ratones Noqueados , Neuronas Motoras/metabolismo , Mutación , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , Paraplejía Espástica Hereditaria/metabolismo , Paraplejía Espástica Hereditaria/patología
20.
J Biol Chem ; 289(16): 11396-11409, 2014 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-24509844

RESUMEN

Glycine receptors (GlyRs) mediate inhibitory neurotransmission in spinal cord and brainstem. They are clustered at inhibitory postsynapses via a tight interaction of their ß subunits (GlyRß) with the scaffolding protein gephyrin. In an attempt to isolate additional proteins interacting with GlyRß, we performed pulldown experiments with rat brain extracts using a glutathione S-transferase fusion protein encompassing amino acids 378-455 of the large intracellular loop of GlyRß as bait. This identified syndapin I (SdpI) as a novel interaction partner of GlyRß that coimmunoprecipitates with native GlyRs from brainstem extracts. Both SdpI and SdpII bound efficiently to the intracellular loop of GlyRß in vitro and colocalized with GlyRß upon coexpression in COS-7 cells. The SdpI-binding site was mapped to a proline-rich sequence of 22 amino acids within the intracellular loop of GlyRß. Deletion and point mutation analysis disclosed that SdpI binding to GlyRß is Src homology 3 domain-dependent. In cultured rat spinal cord neurons, SdpI immunoreactivity was found to partially colocalize with marker proteins of inhibitory and excitatory synapses. When SdpI was acutely knocked down in cultured spinal cord neurons by viral miRNA expression, postsynaptic GlyR clusters were significantly reduced in both size and number. Similar changes in GlyR cluster properties were found in spinal cultures from SdpI-deficient mice. Our results are consistent with a role of SdpI in the trafficking and/or cytoskeletal anchoring of synaptic GlyRs.


Asunto(s)
Encéfalo/metabolismo , Proteínas Portadoras/metabolismo , Neuropéptidos/metabolismo , Fosfoproteínas/metabolismo , Receptores de Glicina/metabolismo , Médula Espinal/metabolismo , Sinapsis/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Encéfalo/citología , Células COS , Proteínas Portadoras/genética , Chlorocebus aethiops , Proteínas del Citoesqueleto , Humanos , Péptidos y Proteínas de Señalización Intracelular , Ratones , Ratones Mutantes , Neuronas/citología , Neuronas/metabolismo , Neuropéptidos/genética , Fosfoproteínas/genética , Mutación Puntual , Unión Proteica , Estructura Secundaria de Proteína , Transporte de Proteínas/fisiología , Proteómica , Ratas , Ratas Wistar , Receptores de Glicina/genética , Médula Espinal/citología , Sinapsis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA