Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Reprod Biol Endocrinol ; 19(1): 70, 2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-33990206

RESUMEN

Adenomyosis (ADS) is an estrogen-dependent gynecological disease with unspecified etiopathogenesis. Local hyperestrogenism may serve a key role in contributing to the origin of ADS. Talin1 is mostly identified to be overexpressed and involved in the progression of numerous human carcinomas through mediating cell proliferation, adhesion and motility. Whether Talin1 exerts an oncogenic role in the pathogenesis of ADS and puts an extra impact on the efficacy of estrogen, no relevant data are available yet. Here we demonstrated that the adenomyotic eutopic and ectopic endometrial stromal cells (ADS_Eu_ESC and ADS_Ec_ESC) treated with ß-estradiol (ß-E2) presented stronger proliferative and pro-angiogenetic capacities, accompanied by increased expression of PCNA, Ki67, VEGFB and ANGPTL4 proteins. Meanwhile, these promoting effects were partially abrogated by Fulvestrant (ICI 182780, an estrogen-receptor antagonist). Aberrantly upregulation of Talin1 mRNA and protein level was observed in ADS endometrial specimens and stromal cells. Through performing functional experiments in vitro, we further determined that merely overexpression of Talin1 (OV-Talin1) also enhanced ADS stromal cell proliferation and pro-angiogenesis, while the most pronounced facilitating effects were found in the co-intervention group of OV-Talin1 plus ß-E2 treatment. Results from the xenograft nude mice model showed that the hypodermic endometrial lesions from co-intervention group had the highest mean weight and volume, compared with that of individual OV-Talin1 or ß-E2 treatment. The expression levels of PCNA, Ki67, VEGFB and ANGPTL4 in the lesions were correspondingly elevated the most in the co-intervention group. Our findings unveiled that overexpressed Talin1 might cooperate withß-E2 in stimulating ADS endometrial stromal cell proliferation and neovascularization, synergistically promoting the growth and survival of ectopic lesions. These results may be beneficial to provide a new insight for clarifying the pathogenesis of ADS.


Asunto(s)
Adenomiosis/fisiopatología , Endometrio/patología , Células del Estroma/fisiología , Talina/fisiología , Adenocarcinoma , Adenomiosis/genética , Adenomiosis/metabolismo , Animales , División Celular/efectos de los fármacos , Línea Celular Tumoral , Células Cultivadas , Ensayo de Unidades Formadoras de Colonias , Neoplasias Endometriales , Estradiol/farmacología , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Miometrio/patología , Neovascularización Patológica/fisiopatología , Neovascularización Fisiológica/efectos de los fármacos , Interferencia de ARN , ARN Interferente Pequeño/genética , Proteínas Recombinantes/metabolismo , Organismos Libres de Patógenos Específicos , Células del Estroma/efectos de los fármacos , Talina/biosíntesis , Talina/genética , Regulación hacia Arriba
2.
Reprod Sci ; 28(5): 1523-1539, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33537874

RESUMEN

Adenomyosis (ADS) is a commonly encountered benign gynecological disorder. Epithelial-mesenchymal transition (EMT) may serve a pivotal role in the pathogenesis of ADS. Talin1 has been identified to be implicated in multiple human carcinomas, probably through inducing EMT process. However, available data on the precise molecular mechanism of Talin1 in the pathogenesis of ADS remain extremely scanty. In the present study, we aim to investigate the clinical roles of Talin1 and its effects on uterine endometrial cell migration, invasion, and EMT in ADS. Relative mRNA expression of Talin1, microRNA-145-5p (miR-145-5p), and EMT-related markers was determined by qRT-PCR. Immunohistochemistry and immunofluorescence were performed to examine the distribution of Talin1 in ADS endometrium. Protein levels of Talin1, EMT-related markers, and wnt/ß-catenin pathway were measured by western blot. Wound healing assay and transwell assay were utilized for evaluating cell migration and invasion respectively. Dual-luciferase reporter assay was performed to verify the relationship between Talin1 and miR-145-5p. We found Talin1 was markedly overexpressed in ADS endometrial tissue and cells, whereas miR-145-5p was downregulated. Elevated Talin1 mRNA level might be closely related to some clinicopathological features of ADS. Through functional experiments, we demonstrated that overexpression of Talin1 induced EMT and enhanced migration and invasion ability of ADS eutopic and ectopic endometrial epithelial cells (ADS_Eu_EEC and ADS_Ec_EEC) in vitro through activating the canonical wnt/ß-catenin pathway. From a mechanistic perspective, Talin1 was inversely regulated by miR-145-5p as a direct target. Our findings unveiled that under the regulation of miR-145-5p, Talin1 might promote endometrial cell migration and invasion through inducing EMT, presenting a novel insight for elucidating the pathogenesis of ADS.


Asunto(s)
Adenomiosis/metabolismo , Movimiento Celular , Endometrio/metabolismo , Transición Epitelial-Mesenquimal , MicroARNs/metabolismo , Talina/metabolismo , Endometrio/citología , Femenino , Humanos , Cultivo Primario de Células , Vía de Señalización Wnt
3.
Biomed Res Int ; 2021: 8868700, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33728345

RESUMEN

Several theories on the origin of adenomyosis (ADS) have been proposed, of which the most widely accepted is the fundamental pathogenic role of uterine eutopic endometrium. Emerging evidence suggests that circular RNAs participate in the multiple tumorgenesis. The vital importance of circular RNA PVT1 (circPVT1) in the pathological progress like malignancies has been well documented. Nevertheless, its underlying correlation with ADS remains elusive yet. The purpose of this study was to investigate the expression pattern, regulatory effect, and internal mechanism of circPVT1 in ADS. qRT-PCR was performed to detect the relative mRNA expression of circPVT1, miR-145, and Talin1 in ADS endometrial tissue and cells. The protein level of Talin1 was measured by Western blot and immunochemistry. Immunofluorescence was used to identify the primary endometrial epithelial and stromal cells. circPVT1 knockdown in vitro was achieved by transfecting with specific lentivirus vector CCK-8, and colony formation assays were utilized to assess cell proliferation; meanwhile, the transwell assay was employed for evaluating cell invasion ability. By conducting bioinformatics, dual-luciferase reporter assay, or RNA immunoprecipitation (RIP) experiment, the interaction between miR-145 and circPVT1 or Talin1 was verified. Rescue experiments further determined the regulatory effect of circPVT1/miR-145/Talin1 axis. We found both circPVT1 and Talin1 were markedly upregulated in ADS endometrial tissue and cells, whereas miR-145 was decreased. Elevated expression of circPVT1 was closely related to the severity of dysmenorrhea, menorrhagia, and uterine enlargement of patients with ADS. Knockdown of circPVT1 inhibited adenomyotic epithelial and stromal cell proliferation and invasion. Further mechanistic experiments revealed that circPVT1 negatively regulated miR-145 through serving as a molecular sponge. And the facilitating effect of circPVT1 was partially reversed by miR-145. Talin1 was demonstrated to be a down target of miR-145 and indirectly affected by circPVT1. Our findings unveiled that enhanced circPVT1 may be involved in the pathogenesis of ADS via stimulating endometrial cell proliferation and invasion. The establishment of circPVT1/miR-145/Talin1 pathway might present a novel therapeutic insight for ADS.


Asunto(s)
Adenomiosis/metabolismo , Proliferación Celular , Endometrio/metabolismo , MicroARNs/metabolismo , ARN Circular/biosíntesis , ARN Largo no Codificante/biosíntesis , Transducción de Señal , Talina/metabolismo , Regulación hacia Arriba , Adenomiosis/genética , Adenomiosis/patología , Endometrio/patología , Femenino , Humanos , MicroARNs/genética , ARN Circular/genética , ARN Largo no Codificante/genética , Talina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA