RESUMEN
The Coronavirus Disease 2019 (COVID-19) pandemic has resulted in the loss of millions of lives, although a majority of those infected have managed to survive. Consequently, a set of outcomes, identified as long COVID, is now emerging. While the primary target of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the respiratory system, the impact of COVID-19 extends to various body parts, including the bone. This study aims to investigate the effects of acute SARS-CoV-2 infection on osteoclastogenesis, utilizing both ancestral and Omicron viral strains. Monocyte-derived macrophages, which serve as precursors to osteoclasts, were exposed to both viral variants. However, the infection proved abortive, even though ACE2 receptor expression increased postinfection, with no significant impact on cellular viability and redox balance. Both SARS-CoV-2 strains heightened osteoclast formation in a dose-dependent manner, as well as CD51/61 expression and bone resorptive ability. Notably, SARS-CoV-2 induced early pro-inflammatory M1 macrophage polarization, shifting toward an M2-like profile. Osteoclastogenesis-related genes (RANK, NFATc1, DC-STAMP, MMP9) were upregulated, and surprisingly, SARS-CoV-2 variants promoted RANKL-independent osteoclast formation. This thorough investigation illuminates the intricate interplay between SARS-CoV-2 and osteoclast precursors, suggesting potential implications for bone homeostasis and opening new avenues for therapeutic exploration in COVID-19.
Asunto(s)
COVID-19 , Osteoclastos , Humanos , Osteoclastos/metabolismo , Síndrome Post Agudo de COVID-19 , COVID-19/metabolismo , SARS-CoV-2 , Diferenciación CelularRESUMEN
Osteoarticular injury is the most common presentation of active brucellosis in humans. Osteoblasts and adipocytes originate from mesenchymal stem cells (MSC). Since those osteoblasts are bone-forming cells, the predilection of MSC to differentiate into adipocytes or osteoblasts is a potential factor involved in bone loss. In addition, osteoblasts and adipocytes can be converted into each other according to the surrounding microenvironment. Here, we study the incumbency of B. abortus infection in the crosstalk between adipocytes and osteoblasts during differentiation from its precursors. Our results indicate that soluble mediators present in culture supernatants from B. abotus-infected adipocytes inhibit osteoblast mineral matrix deposition in a mechanism dependent on the presence of IL-6 with the concomitant reduction of Runt-related transcription factor 2 (RUNX-2) transcription, but without altering organic matrix deposition and inducing nuclear receptor activator ligand kß (RANKL) expression. Secondly, B. abortus-infected osteoblasts stimulate adipocyte differentiation with the induction of peroxisome proliferator-activated receptor γ (PPAR-γ) and CCAAT enhancer binding protein ß (C/EBP-ß). We conclude that adipocyte-osteoblast crosstalk during B. abortus infection could modulate mutual differentiation from its precursor cells, contributing to bone resorption.
Asunto(s)
Resorción Ósea , Osteoblastos , Humanos , Línea Celular , Diferenciación Celular , Osteoblastos/metabolismo , Resorción Ósea/metabolismo , Adipocitos/metabolismoRESUMEN
Human immunodeficiency virus (HIV) neuroinvasion occurs early after infection through the trafficking of virus-infected immune cells into the central nervous system (CNS) and viral dissemination into the brain. There, it can infect resident brain cells including astrocytes, the most abundant cell type that is crucial to brain homeostasis. In this report, we examined the HIV-related mechanism able to induce bystander cell death in astrocytes mediated by cell-to-cell contact with productively infected (PI) ones. We first demonstrate that HIV-induced bystander cell death involves mitochondrial dysfunction that promotes exacerbated reactive oxygen species production. Such a phenomenon is a contagious cell death that requires contact with HIV-PI astrocytes that trigger caspase-dependent (apoptosis and pyroptosis) and caspase-independent cell death pathways. The HIV accessory proteins Nef, Vpu, and Vpr counteract astrocyte death among PI cells but, in contrast, participate to promote contagious bystander cell death by inducing mitochondrial reactive oxygen species production. Our findings indicate that astrocytes PI by HIV became capable to counteract infection-derived death signals, surviving, and spreading the bystander cell death into neighboring uninfected cells by a cell-to-cell contact-dependent mechanism. Considering that astrocytes have been proposed as a long-term HIV reservoir in the CNS, ascertaining the mechanism of survival and contagious bystander death will afford clear targets in the current goal to achieve a functional cure.
Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , Astrocitos/metabolismo , VIH-1/fisiología , Especies Reactivas de Oxígeno/metabolismo , Muerte Celular , Caspasas/metabolismoRESUMEN
Human immunodeficiency virus type 1 (HIV) primary drug resistance mutations (DRMs) influence the long-term therapeutic effects of antiretroviral treatment (ART). Drug-resistance genotyping based on polymerase gene sequences obtained by next-generation sequencing (NGS) was performed using samples from 10 ART-naïve HIV-infected men who have sex with men (MSM; P1-P10) from the acute/early to chronic stage of infection. Three of the 10 subjects exhibited the presence of major (abundance, ≥ 20%) viral populations carrying DRM at early/acute stage that later, at the chronic stage, dropped drastically (V106M) or remained highly abundant (E138A). Four individuals exhibited additional DRMs (M46I/L; I47A; I54M, L100V) as HIV minority populations (abundance, 2-20%) that emerged during the chronic stage but ephemerally.
Asunto(s)
Fármacos Anti-VIH/farmacología , Farmacorresistencia Viral/genética , Infecciones por VIH/virología , VIH-1/genética , Mutación , Infecciones por VIH/tratamiento farmacológico , VIH-1/efectos de los fármacos , Secuenciación de Nucleótidos de Alto Rendimiento , Homosexualidad Masculina , Humanos , Masculino , Filogenia , Minorías Sexuales y de Género , Carga ViralRESUMEN
Despite chronic hepatitis B virus (HBV) infection (CHB) being a leading cause of liver cirrhosis and cancer, HBV evolution during CHB is not fully understood. Recent studies have indicated that virus diversity progressively increases along the course of CHB and that some virus mutations correlate with severe liver conditions such as chronic hepatitis, cirrhosis and hepatocellular carcinoma. Using ultradeep sequencing (UDS) data from an intrafamilial case, we detected such mutations at low frequencies among three immunotolerant patients and at high frequencies in an inactive carrier. Furthermore, our analyses indicated that the HBV population from the seroconverter patient underwent many genetic changes in response to virus clearance. Together, these data indicate a potential use of UDS for developing non-invasive biomarkers for monitoring disease changes over time or in response to specific therapies. In addition, our analyses revealed that virus clearance seemed not to require the virus effective population size to decline. A detailed genetic analysis of the viral lineages arising during and after the clearance suggested that mutations at or close to critical elements of the core promoter (enhancer II, epsilon encapsidation signal, TA2, TA3 and direct repeat 1-hormone response element) might be responsible for a sustained replication. This hypothesis requires the decline in virus load to be explained by constant clearance of virus-producing hepatocytes, consistent with the sustained progress towards serious liver conditions experienced by many CHB patients.
Asunto(s)
Evolución Molecular , Variación Genética , Virus de la Hepatitis B/clasificación , Virus de la Hepatitis B/genética , Hepatitis B Crónica/virología , Secuenciación de Nucleótidos de Alto Rendimiento , Niño , Análisis por Conglomerados , ADN Viral/química , ADN Viral/genética , Salud de la Familia , Femenino , Virus de la Hepatitis B/aislamiento & purificación , Humanos , Lactante , Masculino , Datos de Secuencia Molecular , Filogenia , Análisis de Secuencia de ADN , Homología de SecuenciaRESUMEN
HBV phylogenetics and resistance-associated mutations (RAMs) were surveyed by next-generation sequencing of 21 longitudinal samples from seven patients entering antiviral therapy. The virus populations were dominated by a few abundant lineages that coexisted with substantial numbers of low-frequency variants. A few low-frequency RAMs were observed before treatment, but new ones emerged, and their frequencies increased during therapy. Together, these results support the idea that chronic HBV infection is dominated by a few virus lineages and that an accompanying plethora of diverse, low-frequency variants may function as a reservoir that potentially contribute to viral genetic plasticity, potentially affecting patient outcome.
Asunto(s)
Sustitución de Aminoácidos , Farmacorresistencia Viral , Virus de la Hepatitis B/efectos de los fármacos , Virus de la Hepatitis B/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Adulto , Antivirales/uso terapéutico , Femenino , Genotipo , Virus de la Hepatitis B/clasificación , Virus de la Hepatitis B/aislamiento & purificación , Hepatitis B Crónica/tratamiento farmacológico , Hepatitis B Crónica/virología , Humanos , Estudios Longitudinales , Masculino , FilogeniaRESUMEN
Hepatitis C virus (HCV) is a small, enveloped RNA virus. The number of HCV-infected individuals worldwide is estimated to be approximately 200 million. The vast majority of HCV infections persist, with up to 80% of all cases leading to chronic hepatitis associated with liver fibrosis, cirrhosis, and hepatocellular carcinoma. The interaction between HCV and the host have a pivotal role in viral fitness, persistence, pathogenicity, and disease progression. The control of HCV infection requires both effective innate and adaptive immune responses. The HCV clearance during acute infection is associated with an early induction of the innate and a delayed initiation of the adaptive immune responses. However, in the vast majority of acute HCV infections, these responses are overcome and the virus persistence almost inexorably occurs. Recently, several host- and virus-related mechanisms responsible for the failure of both the innate and the adaptive immune responses have been recognized. Among the latter, the wide range of escape mutations to evade the specific-T-and B-cell responses as well as the T cell anergy and the CD8+ T cell exhaustion together with the interference with its function after prolonged virus exposure hold a pivotal role. Other HCV strategies include the modification or manipulation of molecules playing key roles in the induction of the interferon response and its induced effector proteins. In this review, we attempt to gain insights on the main T cell immune evasion strategies used by the virus in order to favor its persistence.
Asunto(s)
Inmunidad Adaptativa , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Hepacivirus/inmunología , Hepatitis C Crónica/inmunología , Inmunidad Innata , Animales , Antivirales/uso terapéutico , Linfocitos T CD4-Positivos/virología , Linfocitos T CD8-positivos/virología , Genotipo , Hepacivirus/efectos de los fármacos , Hepacivirus/genética , Hepacivirus/patogenicidad , Hepatitis C Crónica/diagnóstico , Hepatitis C Crónica/terapia , Interacciones Huésped-Patógeno , Humanos , Inmunoterapia/métodos , Mutación , FenotipoRESUMEN
Although HIV-associated neurocognitive disorders (HAND) result from injury and loss of neurons, productive infection routinely takes place in cells of macrophage lineage. In such a complex context, astrocytosis induced by local chemokines/cytokines is one of the hallmarks of HIV neuropathology. Whether this sustained astrocyte activation is able to alter telomere-aging process is unknown. We hypothesized that interaction of HIV with astrocytes may impact astrocyte telomerase activity (TA) and telomere length in a scenario of astrocytic activation measured by expression of glial fibrillary acidic protein (GFAP). To test this hypothesis, cultured murine astrocytes were challenged with pseudotyped HIV/vesicular stomatitis virus (HIV/VSV) to circumvent the absence of viral receptors; and GFAP, telomerase activity, and telomere length were quantified. As an early and transient event after HIV infection, both TA activity and telomere length were significantly augmented (P < 0.001). Later, a strong negative correlation (-0.8616, P < 0.0001) between virus production and telomerase activity was demonstrated. Once HIV production had reached a peak (7 dpi), the TA decreased, showing levels similar to those of noninfected cells. In contrast, the astrocyte became activated, exhibiting significantly increased levels of GFAP expression directly related to the level of HIV/VSV replication (P < 0.0001). Our results suggest that HIV-infected astrocytes exhibit early disturbance in their cellular functions, such as telomerase activity and telomere length, that may attenuate cell proliferation and enhance the astrocyte dysregulation, contributing to HIV neuropathogenesis. Understanding the mechanisms involved in HIV-mediated persistence by altering the telomere-related aging processes could aid in the development of therapeutic modalities for neurological complications of HIV infection.
Asunto(s)
Astrocitos/metabolismo , Astrocitos/virología , Proteína Ácida Fibrilar de la Glía/biosíntesis , Telomerasa/metabolismo , Telómero/patología , Complejo SIDA Demencia , Animales , Astrocitos/patología , Células Cultivadas , Modelos Animales de Enfermedad , VIH-1 , Ratones , Ratones Endogámicos BALB C , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Telómero/metabolismoRESUMEN
Commercial sex work is frequent among male-to-female transvestites, transsexuals and transgenders in Argentina, leading to high susceptibility to HIV, HBV, and HCV among other sexually transmitted infections. In a global context of scarce data on the trans sex workers population, this study was aimed to study the genomic characterization of these viruses. Plasma presence of HIV, HBV, and HCV genomic material was evaluated in samples from 273 trans sex workers. Genomic sequences of HIV-gag, pol, and vif-vpu genes, HBV-S gene, and HCV-5'UT and NS5B genes were obtained. Molecular characterization involved phylogenetic analysis and several in silico tools. Resistance-associated mutations in HIV and HBV pol genes were also analyzed. The HIV genomic characterization in 62 trans sex workers samples showed that 54.8% of the isolates corresponded to BF intersubtype recombinants, and 38.7% to subtype B. The remaining were classified as subtypes C (4.8%) and A (1.6%). HBV and HCV co-infection prevalence among HIV positive trans sex workers yielded rates of 3.2% and 6.5% respectively. Drug resistance-associated mutations were found in 12/62 (19%) HIV pol sequences, but none among HBV. Based on phylogenetic relationships, HIV isolates characterized as subtypes BF and B appeared intermingled with those from other high-risk groups. Despite trans sex workers declared not to have received antiviral treatment, complex drug resistance-associated mutation patterns were found in several HIV isolates. Planned prevention, screening, and treatment are needed to reduce further transmission and morbidity.
Asunto(s)
Infecciones por VIH/epidemiología , Hepatitis B/epidemiología , Hepatitis C/epidemiología , Trabajadores Sexuales , Personas Transgénero , Adulto , Argentina/epidemiología , Análisis por Conglomerados , Estudios Transversales , ADN Viral/genética , ADN Viral/aislamiento & purificación , Farmacorresistencia Viral , Femenino , Genotipo , VIH/clasificación , VIH/genética , VIH/aislamiento & purificación , Infecciones por VIH/virología , Hepatitis B/virología , Virus de la Hepatitis B/clasificación , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/aislamiento & purificación , Hepatitis C/virología , Humanos , Masculino , Epidemiología Molecular , Datos de Secuencia Molecular , Mutación Missense , Filogenia , Plasma/virología , ARN Viral/genética , ARN Viral/aislamiento & purificación , Análisis de Secuencia de ADN , Adulto JovenRESUMEN
The coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has presented global challenges with a diverse clinical spectrum, including severe respiratory complications and systemic effects. This review explores the intricate relationship between mitochondrial dysfunction, aging, and obesity in COVID-19. Mitochondria are vital for cellular energy provision and resilience against age-related macromolecule damage accumulation. They manage energy allocation in cells, activating adaptive responses and stress signals such as redox imbalance and innate immunity activation. As organisms age, mitochondrial function diminishes. Aging and obesity, linked to mitochondrial dysfunction, compromise the antiviral response, affecting the release of interferons, and worsening COVID-19 severity. Furthermore, the development of post-acute sequelae of SARS-CoV-2 infection (PASC), also known as long COVID has been associated with altered energy metabolism, and chronic immune dysregulation derived from mitochondrial dysfunction. Understanding the interplay between mitochondria, aging, obesity, and viral infections provides insights into COVID-19 pathogenesis. Targeting mitochondrial health may offer potential therapeutic strategies to mitigate severe outcomes and address long-term consequences in infected individuals.
RESUMEN
Obesity has emerged as a significant public health challenge. With the ongoing increase in life expectancy, the prevalence of obesity is steadily growing, particularly among older age demographics. The extension of life expectancy frequently results in additional years of vulnerability to chronic health issues associated with obesity in the elderly.The concept of SARS-CoV-2 directly infecting adipose tissue stems from the fact that both adipocytes and stromal vascular fraction cells express ACE2, the primary receptor facilitating SARS-CoV-2 entry. It is noteworthy that adipose tissue demonstrates ACE2 expression levels similar to those found in the lungs within the same individual. Additionally, ACE2 expression in the adipose tissue of obese individuals surpasses that in non-obese counterparts. Viral attachment to ACE2 has the potential to disturb the equilibrium of renin-angiotensin system homeostasis, leading to an exacerbated inflammatory response.Consequently, adipose tissue has been investigated as a potential site for active SARS-CoV-2 infection, suggesting its plausible role in virus persistence and contribution to both acute and long-term consequences associated with COVID-19.This review is dedicated to presenting current evidence concerning the presence of SARS-CoV-2 in the adipose tissue of elderly individuals infected with the virus. Both obesity and aging are circumstances that contribute to severe health challenges, heightening the risk of disease and mortality. We will particularly focus on examining the mechanisms implicated in the long-term consequences, with the intention of providing insights into potential strategies for mitigating the aftermath of the disease.
Asunto(s)
COVID-19 , Humanos , Anciano , SARS-CoV-2 , Peptidil-Dipeptidasa A , Enzima Convertidora de Angiotensina 2 , Envejecimiento , Obesidad , Tejido AdiposoRESUMEN
Hepatitis B virus (HBV) infection poses a global health concern without a definitive cure; however, antiviral medications can effectively suppress viral replication. This study delves into the intricate interplay between lipid metabolism and HBV replication, implicating molecular mechanisms such as the stearoyl coenzyme A desaturase 1 autophagy pathway, SAC1-like phosphatidylinositol phosphatase, and galectin-9 mediated selective autophagy of viral core proteins in regulating HBV replication. Within lipid droplets, perilipin 2 (PLIN2) emerges as a pivotal guardian, with its overexpression protecting against autophagy and downregulation stimulating triglyceride catabolism through the autophagy pathway. This editorial discusses the correlation between hepatic steatosis and HBV replication, emphasizing the role of PLIN2 in this process. The study underscores the multifaceted roles of lipid metabolism, autophagy, and perilipins in HBV replication, shedding light on potential therapeutic avenues.
RESUMEN
In coronavirus disease 2019 (COVID-19), severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) primarily targets the respiratory system, but evidence suggests extrapulmonary organ involvement, notably in the liver. Viral RNA has been detected in hepatic tissues, and in situ hybridization revealed virions in blood vessels and endothelial cells. Electron microscopy confirmed viral particles in hepatocytes, emphasizing the need for understanding hepatotropism and direct cytopathic effects in COVID-19-related liver injury. Various factors contribute to liver injury, including direct cytotoxicity, vascular changes, inflammatory responses, immune reactions from COVID-19 and vaccinations, and drug-induced liver injury. Although a typical hepatitis presentation is not widely documented, elevated liver biochemical markers are common in hospitalized COVID-19 patients, primarily showing a hepatocellular pattern of elevation. Long-term studies suggest progressive cholestasis may affect 20% of patients with chronic liver disease post-SARS-CoV-2 infection. The molecular mechanisms underlying SARS-CoV-2 infection in the liver and the resulting liver damage are complex. This "Editorial" highlights the expression of the Angiotensin-converting enzyme-2 receptor in liver cells, the role of inflammatory responses, the impact of hypoxia, the involvement of the liver's vascular system, the infection of bile duct epithelial cells, the activation of hepatic stellate cells, and the contribution of monocyte-derived macrophages. It also mentions that pre-existing liver conditions can worsen the outcomes of COVID-19. Understanding the interaction of SARS-CoV-2 with the liver is still evolving, and further research is required.
RESUMEN
Due to a common mode of transmission through infected human blood, hepatitis C virus (HCV) and human immunodeficiency virus (HIV) co-infection is relatively prevalent. In alignment with this, HCV co-infection is associated with an increased size of the HIV reservoir in highly active antiretroviral therapy (HAART)-treated individuals. Hence, it is crucial to comprehend the physiological mechanisms governing the latency and reactivation of HIV in reservoirs. Consequently, our study delves into the interplay between HCV/HIV co-infection in liver cells and its impact on the modulation of HIV latency. We utilized the latently infected monocytic cell line (U1) and the latently infected T-cell line (J-Lat) and found that mediators produced by the infection of hepatic stellate cells and hepatocytes with HIV and HCV, respectively, were incapable of inducing latency reversal under the studied conditions. This may favor the maintenance of the HIV reservoir size among latently infected mononuclear cells in the liver. Further investigations are essential to elucidate the role of the interaction between liver cells in regulating HIV latency and/or reactivation, providing a physiologically relevant model for comprehending reservoir microenvironments in vivo.
RESUMEN
Bone loss is a prevalent characteristic among people with HIV (PWH). We focused on mesenchymal stem cells (MSCs) and osteoblasts, examining their susceptibility to different HIV strains (R5- and X4-tropic) and the subsequent effects on bone tissue homeostasis. Our findings suggest that MSCs and osteoblasts are susceptible to R5- and X4-tropic HIV but do not support productive HIV replication. HIV exposure during the osteoblast differentiation process revealed that the virus could not alter mineral and organic matrix deposition. However, the reduction in runt-related transcription factor 2 (RUNX2) transcription, the increase in the transcription of nuclear receptor activator ligand kappa B (RANKL), and the augmentation of vitronectin deposition strongly suggested that X4- and R5-HIV could affect bone homeostasis. This study highlights the HIV ability to alter MSCs' differentiation into osteoblasts, critical for maintaining bone and adipose tissue homeostasis and function.
RESUMEN
Liver fibrosis is the excessive accumulation of extracellular matrix proteins, primarily collagen, in response to liver injury caused by chronic liver diseases. HIV infection accelerates the progression of liver fibrosis in patients co-infected with HCV or HBV compared to those who are only mono-infected. The early event in the progression of liver fibrosis involves the activation of hepatic stellate cells (HSCs), which entails the loss of lipid droplets (LD) to fuel the production of extracellular matrix components crucial for liver tissue healing. Thus, we are examining the mechanism by which HIV stimulates the progression of liver fibrosis. HIV-R5 tropic infection was unable to induce the expression of TGF-ß, collagen deposition, α-smooth muscle actin (α-SMA), and cellular proliferation. However, this infection induced the secretion of the profibrogenic cytokine IL-6 and the loss of LD. This process involved the participation of peroxisome proliferator-activated receptor (PPAR)-α and an increase in lysosomal acid lipase (LAL), along with the involvement of Microtubule-associated protein 1 A/1B-light chain 3 (LC3), strongly suggesting that LD loss could occur through acid lipolysis. These phenomena were mimicked by the gp120 protein from the R5 tropic strain of HIV. Preincubation of HSCs with the CCR5 receptor antagonist, TAK-779, blocked gp120 activity. Additionally, experiments performed with pseudotyped-HIV revealed that HIV replication could also contribute to LD loss. These results demonstrate that the cross-talk between HSCs and HIV involves a series of interactions that help explain some of the mechanisms involved in the exacerbation of liver damage observed in co-infected individuals.
Asunto(s)
Infecciones por VIH , Hepatopatías , Humanos , Colágeno/metabolismo , Células Estrelladas Hepáticas/metabolismo , Infecciones por VIH/metabolismo , Gotas Lipídicas/metabolismo , Cirrosis Hepática/patología , Hepatopatías/patología , Proteína gp120 de Envoltorio del VIHRESUMEN
Coronavirus disease 2019 (COVID-19) might impact disease progression in people living with HIV (PLWH), including those on effective combination antiretroviral therapy (cART). These individuals often experience chronic conditions characterized by proviral latency or low-level viral replication in CD4+ memory T cells and tissue macrophages. Pro-inflammatory cytokines, such as TNF-α, IL-1ß, IL-6, and IFN-γ, can reactivate provirus expression in both primary cells and cell lines. These cytokines are often elevated in individuals infected with SARS-CoV-2, the virus causing COVID-19. However, it is still unknown whether SARS-CoV-2 can modulate HIV reactivation in infected cells. Here, we report that exposure of the chronically HIV-1-infected myeloid cell line U1 to two different SARS-CoV-2 viral isolates (ancestral and BA.5) reversed its latent state after 24 h. We also observed that SARS-CoV-2 exposure of human primary monocyte-derived macrophages (MDM) initially drove their polarization towards an M1 phenotype, which shifted towards M2 over time. This effect was associated with soluble factors released during the initial M1 polarization phase that reactivated HIV production in U1 cells, like MDM stimulated with the TLR agonist resiquimod. Our study suggests that SARS-CoV-2-induced systemic inflammation and interaction with macrophages could influence proviral HIV-1 latency in myeloid cells in PLWH.
Asunto(s)
COVID-19 , Citocinas , Infecciones por VIH , VIH-1 , Macrófagos , Células Mieloides , SARS-CoV-2 , Latencia del Virus , Humanos , SARS-CoV-2/fisiología , VIH-1/fisiología , COVID-19/virología , COVID-19/inmunología , Macrófagos/virología , Macrófagos/inmunología , Células Mieloides/virología , Citocinas/metabolismo , Infecciones por VIH/virología , Infecciones por VIH/inmunología , Infecciones por VIH/tratamiento farmacológico , Línea Celular , Efecto Espectador , Activación Viral , Replicación Viral/efectos de los fármacos , Linfocitos T CD4-Positivos/virología , Linfocitos T CD4-Positivos/inmunologíaRESUMEN
This study aims to explore the influence of coinfection with HCV and HIV on hepatic fibrosis. A coculture system was set up to actively replicate both viruses, incorporating CD4 T lymphocytes (Jurkat), hepatic stellate cells (LX-2), and hepatocytes (Huh7.5). LX-2 cells' susceptibility to HIV infection was assessed through measurements of HIV receptor expression, exposure to cell-free virus, and cell-to-cell contact with HIV-infected Jurkat cells. The study evaluated profibrotic parameters, including programed cell death, ROS imbalance, cytokines (IL-6, TGF-ß, and TNF-α), and extracellular matrix components (collagen, α-SMA, and MMP-9). The impact of HCV infection on LX-2/HIV-Jurkat was examined using soluble factors released from HCV-infected hepatocytes. Despite LX-2 cells being nonsusceptible to direct HIV infection, bystander effects were observed, leading to increased oxidative stress and dysregulated profibrotic cytokine release. Coculture with HIV-infected Jurkat cells intensified hepatic fibrosis, redox imbalance, expression of profibrotic cytokines, and extracellular matrix production. Conversely, HCV-infected Huh7.5 cells exhibited elevated profibrotic gene transcriptions but without measurable effects on the LX-2/HIV-Jurkat coculture. This study highlights how HIV-infected lymphocytes worsen hepatic fibrosis during HCV/HIV coinfection. They increase oxidative stress, profibrotic cytokine levels, and extracellular matrix production in hepatic stellate cells through direct contact and soluble factors. These insights offer valuable potential therapies for coinfected individuals.
Asunto(s)
Efecto Espectador , Técnicas de Cocultivo , Coinfección , Citocinas , Infecciones por VIH , Hepacivirus , Células Estrelladas Hepáticas , Hepatitis C , Cirrosis Hepática , Humanos , Células Estrelladas Hepáticas/metabolismo , Infecciones por VIH/complicaciones , Infecciones por VIH/metabolismo , Infecciones por VIH/virología , Infecciones por VIH/inmunología , Hepacivirus/fisiología , Hepatitis C/metabolismo , Hepatitis C/virología , Hepatitis C/complicaciones , Hepatitis C/inmunología , Células Jurkat , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Cirrosis Hepática/virología , Cirrosis Hepática/etiología , Citocinas/metabolismo , Hepatocitos/metabolismo , Hepatocitos/virología , VIH/fisiología , Estrés Oxidativo , Comunicación Celular , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Matriz Extracelular/metabolismoRESUMEN
Monocyte-derived macrophages (MDM) are widely distributed in all tissues and organs, including the central nervous system, where they represent the main part of HIV-infected cells. In contrast to activated CD4(+) T lymphocytes, MDM are resistant to cytopathic effects and survive HIV infection for a long period of time. The molecular mechanisms of how HIV is able to persist in macrophages are not fully elucidated yet. In this context, we have studied the effect of in vitro HIV-1 infection on telomerase activity (TA), telomere length, and DNA damage. Infection resulted in a significant induction of TA. This increase was directly proportional to the efficacy of HIV infection and was found in both nuclear and cytoplasmic extracts, while neither UV light-inactivated HIV nor exogenous addition of the viral protein Tat or gp120 affected TA. Furthermore, TA was not modified during monocyte-macrophage differentiation, MDM activation, or infection with vaccinia virus. HIV infection did not affect telomere length. However, HIV-infected MDM showed less DNA damage after oxidative stress than noninfected MDM, and this resistance was also increased by overexpressing telomerase alone. Taken together, our results suggest that HIV induces TA in MDM and that this induction might contribute to cellular protection against oxidative stress, which could be considered a viral strategy to make macrophages better suited as longer-lived, more resistant viral reservoirs. In the light of the clinical development of telomerase inhibitors as anticancer therapeutics, inhibition of TA in HIV-infected macrophages might also represent a novel therapeutic target against viral reservoirs.
Asunto(s)
Regulación Viral de la Expresión Génica , VIH-1/metabolismo , Macrófagos/metabolismo , Macrófagos/virología , Telomerasa/biosíntesis , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/virología , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Daño del ADN , Infecciones por VIH/metabolismo , Infecciones por VIH/virología , Humanos , Interleucina-4/metabolismo , Lipopolisacáridos/metabolismo , Estrés Oxidativo , Fenotipo , Telomerasa/metabolismo , Telómero/ultraestructuraRESUMEN
This 8-year longitudinal study was aimed to analyze the HIV-1 gp120-C2V3C3 sequence dynamics, their phylogenetic relationships and tropism evolution in patients under HAART. Such viral analysis comprised two compartments: plasma and PBMC. Fifty gp120-C2V3C3 genomic sequences were characterized from 16 patients: 41 from plasma when viremia was measurable and 9 from PBMCs if plasma viral load was undetectable. The vast majority of HIV isolates (43 out of 50) were ascribed to BF subtype, irrespective of the compartment (plasma or mononuclear-cells) analyzed. A statistically well-supported clustering phenomenon was observed for each patient sampling data. Each cluster comprised viral sequences from both compartments analyzed. In the vast majority of cases, the viral sequences obtained along active production periods were intermingled with those identified from proviral sequences. A substantial stability of co-receptor tropism for the HIV BF subtype was observed over an 8-year followup.