Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Mar Drugs ; 20(11)2022 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-36355005

RESUMEN

Euplotin C is a sesquiterpene of marine origin endowed with significant anti-microbial and anti-tumor properties. Despite the promising functional profile, its progress as a novel drug candidate has failed so far, due to its scarce solubility and poor stability in aqueous media, such as biological fluids. Therefore, overcoming these limits is an intriguing challenge for the scientific community. In this work, we synthesized ß-cyclodextrin-based nanosponges and investigated their use as colloidal carriers for stably complex euplotin C. Results obtained proved the ability of the carrier to include the natural compound, showing remarkable values of both loading efficiency and capacity. Moreover, it also allowed us to preserve the chemical structure of the loaded compound, which was recovered unaltered once extracted from the complex. Therefore, the use of ß-cyclodextrin-based nanosponges represents a viable option to vehiculate euplotin C, thus opening up its possible use as pharmacologically active compound.


Asunto(s)
Ciclodextrinas , Sesquiterpenos , beta-Ciclodextrinas , Ciclodextrinas/farmacología , Ciclodextrinas/química , beta-Ciclodextrinas/química , Sesquiterpenos/farmacología , Solubilidad
2.
Int J Mol Sci ; 22(12)2021 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-34199160

RESUMEN

Acadesine (ACA), a pharmacological activator of AMP-activated protein kinase (AMPK), showed a promising beneficial effect in a mouse model of colitis, indicating this drug as an alternative tool to manage IBDs. However, ACA displays some pharmacodynamic limitations precluding its therapeutical applications. Our study was aimed at evaluating the in vitro and in vivo effects of FA-5 (a novel direct AMPK activator synthesized in our laboratories) in an experimental model of colitis in rats. A set of experiments evaluated the ability of FA5 to activate AMPK and to compare the efficacy of FA5 with ACA in an experimental model of colitis. The effects of FA-5, ACA, or dexamethasone were tested in rats with 2,4-dinitrobenzenesulfonic acid (DNBS)-induced colitis to assess systemic and tissue inflammatory parameters. In in vitro experiments, FA5 induced phosphorylation, and thus the activation, of AMPK, contextually to the activation of SIRT-1. In vivo, FA5 counteracted the increase in spleen weight, improved the colon length, ameliorated macroscopic damage score, and reduced TNF and MDA tissue levels in DNBS-treated rats. Of note, FA-5 displayed an increased anti-inflammatory efficacy as compared with ACA. The novel AMPK activator FA-5 displays an improved anti-inflammatory efficacy representing a promising pharmacological tool against bowel inflammation.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Benzofuranos/uso terapéutico , Desarrollo de Medicamentos , Activadores de Enzimas/farmacología , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Animales , Benzofuranos/farmacología , Peso Corporal/efectos de los fármacos , Línea Celular , Colon/efectos de los fármacos , Colon/patología , Dinitrofluorobenceno/análogos & derivados , Electroforesis en Gel Bidimensional , Ontología de Genes , Enfermedades Inflamatorias del Intestino/patología , Interleucina-10/metabolismo , Masculino , Malondialdehído/metabolismo , Ratones , Tamaño de los Órganos/efectos de los fármacos , Fosforilación/efectos de los fármacos , Ratas Sprague-Dawley , Bazo/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo
3.
J Enzyme Inhib Med Chem ; 35(1): 1194-1205, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32396745

RESUMEN

Aldose reductase is a key enzyme in the development of long term diabetic complications and its inhibition represents a viable therapeutic solution for people affected by these pathologies. Therefore, the search for effective aldose reductase inhibitors is a timely and pressing challenge. Herein we describe the access to a novel class of oxyimino derivatives, obtained by reaction of a 1,5-dicarbonyl substrate with O-(arylmethyl)hydroxylamines. The synthesised compounds proved to be active against the target enzyme. The best performing inhibitor, compound (Z)-8, proved also to reduce both cell death and the apoptotic process when tested in an in vitro model of diabetic retinopathy made of photoreceptor-like 661w cell line exposed to high-glucose medium, counteracting oxidative stress triggered by hyperglycaemic conditions.


Asunto(s)
Aldehído Reductasa/antagonistas & inhibidores , Antioxidantes/farmacología , Inhibidores Enzimáticos/farmacología , Iminas/química , Azúcares/química , Inhibidores Enzimáticos/química , Estructura Molecular
4.
Bioorg Chem ; 92: 103298, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31557624

RESUMEN

Diabetes is a multi-factorial disorder that should be treated with multi-effective compounds. Here we describe the access to polyhydroxylated pyrrolidines, belonging to the d-gluco and d-galacto series, through aminocyclization reactions of two differentially protected d-xylo-hexos-4-ulose derivatives. The prepared compounds proved to inhibit both alpha-glucosidase, responsible for the emergence of hyperglycemic spikes, and aldose reductase, accountable for the development of abnormalities in diabetic tissues. Accordingly, they show the dual inhibitory profile deemed as ideal for diabetes treatment. Significantly, compound 17b reduced the process of cell death and restored the physiological levels of oxidative stress when tested in the photoreceptor-like 661w cell line, thus proving to be effective in an in vitro model of diabetic retinopathy.


Asunto(s)
Aldehído Reductasa/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Pirrolidinas/farmacología , alfa-Glucosidasas/metabolismo , Aldehído Reductasa/metabolismo , Células Cultivadas , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Estructura Molecular , Pirrolidinas/síntesis química , Pirrolidinas/química , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad
5.
J Enzyme Inhib Med Chem ; 34(1): 350-360, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30734590

RESUMEN

Seven triterpenoid saponins were identified in methanolic extracts of seeds of the Zolfino bean landrace (Phaseolus vulgaris L.) by HPLC fractionation, revealing their ability to inhibit highly purified human recombinant aldose reductase (hAKR1B1). Six of these compounds were associated by MS analysis with the following saponins already reported in different Phaseolus vulgaris varieties: soyasaponin Ba (V), soyasaponin Bb, soyasaponin Bd (sandosaponin A), soyasaponin αg, 3-O-[R-l-rhamnopyranosyl(1 → 2)-α-d-glucopyranosyl(1 → 2)-α-d-glucuronopyranosyl]olean-12-en-22-oxo-3α,-24-diol, and soyasaponin ßg. The inhibitory activity of the collected fractions containing the above compounds was tested for hAKR1B1-dependent reduction of both l-idose and 4-hydroxynonenal, revealing that some are able to differentially inhibit the enzyme. The present work also highlights the difficulties in the search for aldose reductase differential inhibitors (ARDIs) in mixtures due to the masking effect on ARDIs exerted by the presence of conventional aldose reductase inhibitors. The possibility of differential inhibition generated by a different inhibitory model of action of molecules on different substrates undergoing transformation is also discussed.


Asunto(s)
Aldehído Reductasa/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Phaseolus/química , Saponinas/farmacología , Semillas/química , Triterpenos/farmacología , Aldehído Reductasa/metabolismo , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/aislamiento & purificación , Humanos , Conformación Molecular , Saponinas/química , Saponinas/aislamiento & purificación , Relación Estructura-Actividad , Triterpenos/química , Triterpenos/aislamiento & purificación
6.
Saudi Pharm J ; 27(8): 1174-1181, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31885477

RESUMEN

Low-grade chronic inflammation is a key process of angiogenesis in tumour progression. We investigated whether a synthetic analogue of apigenin, the 2-(3,4-dimethoxyphenyl)-3-phenyl-4H-pyrido[1,2-a] pyrimidin-4-one (called DB103), interfered with the mechanisms involved in the angiogenic process induced by the inflammatory cytokine tumour necrosis factor (TNFα). In endothelial cells, DB103 but not apigenin reduced the TNFα-induced oxidative stress. DB103 inhibited the activation of ERK1/2 but not JNK, p38 and Akt kinases, while apigenin was not so selective because it inhibited essentially all examined kinases. Similarly, apigenin inhibited the TNFα-induced transcription factors CREB, STAT3, STAT5 and NF-κB, while DB103 acted only on NF-κB. DB103 inhibited the induced-release of angiogenic factors such as monocyte chemotactic protein-1, interleukin-6 (IL-6) and angiopoietin-2 but not IL-8, while apigenin reduced the IL-6 and IL-8 release. DB103 revealed a better ability than apigenin to modulate proangiogenic responses induced by an inflammatory microenvironment.

7.
Bioorg Med Chem Lett ; 27(20): 4760-4764, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28935265

RESUMEN

A series of quinazolinone-based rhodanine-3-acetic acids was synthesized and tested for in vitro aldose reductase inhibitory activity. All the target compounds displayed nanomolar activity against the target enzyme. Compounds 3a, 3b, and 3e exhibited almost 3-fold higher activity as compared to the only marketed reference drug epalrestat. Structure-activity relationship studies indicated that bulky substituents at the 3-phenyl ring of the quinazolinone moiety are generally not tolerated in the active site of the enzyme. Insertion of a methoxy group on the central benzylidene ring was found to have a variable effect on ALR-2 activity depending on the nature of peripheral quinazolinone ring substituents. Removal of the acetic acid moiety led to inactive or weakly active target compounds. Docking and molecular dynamic simulations of the most active rhodanine-3-acetic acid derivatives were also carried out, to provide the basis for further structure-guided design of novel inhibitors.


Asunto(s)
Aldehído Reductasa/antagonistas & inhibidores , Inhibidores Enzimáticos/síntesis química , Quinazolinonas/química , Rodanina/química , Ácido Acético/química , Aldehído Reductasa/metabolismo , Sitios de Unión , Inhibidores Enzimáticos/metabolismo , Concentración 50 Inhibidora , Simulación del Acoplamiento Molecular , Rodanina/análogos & derivados , Rodanina/síntesis química , Rodanina/metabolismo , Relación Estructura-Actividad , Termodinámica , Tiazolidinas/química , Tiazolidinas/metabolismo
8.
Biomedicines ; 8(12)2020 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-33291762

RESUMEN

Prostate cancer represents the most common malignancy diagnosed in men, and is the second-leading cause of cancer death in this population. In spite of dedicated efforts, the current therapies are rarely curative, requiring the development of novel approaches based on innovative molecular targets. In this work, we validated aldehyde dehydrogenase 1A1 and 1A3 isoform expressions in different prostatic tissue-derived cell lines (normal, benign and malignant) and patient-derived primary prostate tumor epithelial cells, demonstrating their potential for therapeutic intervention using a small library of aldehyde dehydrogenase inhibitors. Compound 3b, 6-(4-fluorophenyl)-2-phenylimidazo [1,2-a]pyridine exhibited not only antiproliferative activity in the nanomolar range against the P4E6 cell line, derived from localized prostate cancer, and PC3 cell lines, derived from prostate cancer bone metastasis, but also inhibitory efficacy against PC3 colony-forming efficiency. Considering its concomitant reduced activity against normal prostate cells, 3b has the potential as a lead compound to treat prostate cancer by means of a still untapped molecular target.

9.
ACS Med Chem Lett ; 11(5): 963-970, 2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-32435412

RESUMEN

Members of the aldehyde dehydrogenase 1A family are commonly acknowledged as hallmarks of cancer stem cells, and their overexpression is significantly associated with poor prognosis in different types of malignancies. Accordingly, treatments targeting these enzymes may represent a successful strategy to fight cancer. In this work we describe a novel series of imidazo[1,2-a]pyridines, designed as aldehyde dehydrogenase inhibitors by means of a structure-based optimization of a previously developed lead. The novel compounds were evaluated in vitro for their activity and selectivity against the three isoforms of the ALDH1A family and investigated through crystallization and modeling studies for their ability to interact with the catalytic site of the 1A3 isoform. Compound 3f emerged as the first in class submicromolar competitive inhibitor of the target enzyme.

10.
J Med Chem ; 63(9): 4603-4616, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-32223240

RESUMEN

Glioblastoma multiforme (GBM) is the deadliest form of brain tumor. It is known for its ability to escape the therapeutic options available to date thanks to the presence of a subset of cells endowed with stem-like properties and ability to resist to cytotoxic treatments. As the cytosolic enzyme aldehyde dehydrogenase 1A3 turns out to be overexpressed in these kinds of cells, playing a key role for their vitality, treatments targeting this enzyme may represent a successful strategy to fight GBM. In this work, we describe a novel class of imidazo[1,2-a]pyridine derivatives as aldehyde dehydrogenase 1A3 inhibitors, reporting the evidence of their significance as novel drug candidates for the treatment of GBM. Besides showing an interesting functional profile, in terms of activity against the target enzyme and selectivity toward highly homologous isoenzymes, representative examples of the series also showed a nanomolar to picomolar efficacy against patient-derived GBM stem-like cells, thus proving the concept that targeting aldehyde dehydrogenase might represent a novel and promising way to combat GBM by striking its ability to divide immortally.


Asunto(s)
Aldehído Oxidorreductasas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Imidazoles/farmacología , Células Madre Neoplásicas/efectos de los fármacos , Piridinas/farmacología , Aldehído Oxidorreductasas/química , Aldehído Oxidorreductasas/metabolismo , Dominio Catalítico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/metabolismo , Glioblastoma/tratamiento farmacológico , Humanos , Imidazoles/síntesis química , Imidazoles/metabolismo , Simulación del Acoplamiento Molecular , Estructura Molecular , Unión Proteica , Piridinas/síntesis química , Piridinas/metabolismo , Relación Estructura-Actividad
11.
Expert Opin Ther Pat ; 29(3): 199-213, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30760060

RESUMEN

INTRODUCTION: Aldose reductase (ALR2) is both the key enzyme of the polyol pathway, whose activation under hyperglycemic conditions leads to the development of chronic diabetic complications, and the crucial promoter of inflammatory and cytotoxic conditions, even under a normoglycemic status. Accordingly, it represents an excellent drug target and a huge effort is being done to disclose novel compounds able to inhibit it. AREAS COVERED: This literature survey summarizes patents and patent applications published over the last 5 years and filed for natural, semi-synthetic and synthetic ALR2 inhibitors. Compounds described have been discussed and analyzed from both chemical and functional angles. EXPERT OPINION: Several ALR2 inhibitors with a promising pre-clinical ability to address diabetic complications and inflammatory diseases are being developed during the observed timeframe. Natural compounds and plant extracts are the prevalent ones, thus confirming the use of phytopharmaceuticals as an increasingly pursued therapeutic trend also in the ALR2 inhibitors field. Intriguing hints may be taken from synthetic derivatives, the most significant ones being represented by the differential inhibitors ARDIs. Differently from classical ARIs, these compounds should fire up the therapeutic efficacy of the class while minimizing its side effects, thus overcoming the existing limits of this kind of inhibitors.


Asunto(s)
Aldehído Reductasa/antagonistas & inhibidores , Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Aldehído Reductasa/metabolismo , Animales , Complicaciones de la Diabetes/tratamiento farmacológico , Complicaciones de la Diabetes/enzimología , Inhibidores Enzimáticos/efectos adversos , Humanos , Inflamación/tratamiento farmacológico , Inflamación/enzimología , Patentes como Asunto
12.
Sci Rep ; 9(1): 9943, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31289333

RESUMEN

Melanoma is the most serious form of skin cancer but its medication is still far from being safe and thoroughly effective. The search of novel therapeutic approaches represents therefore a health emergency to push through eagerly. In this study, we describe a novel class of dual c-Kit/Aur inhibitors, characterized by a 1,2,4-triazole core and developed by a structure-based optimization of a previously developed hit, and report the evidence of their significance as drug candidates for the treatment of melanoma. Compound 6a, merging the best inhibitory profile against the target kinases, showed anti-proliferative efficacy against the human melanoma cell lines A2058, expressing the BRAF V600D mutation, and WM266-4, expressing BRAF V600E. Significantly, it displayed also a highly synergistic profile when tested in combination with vemurafenib, thus proving its efficacy not only per se but even in a combination therapy, which is nowadays acknowledged as the cornerstone approach of the forthcoming tumour management.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Aurora Quinasas/antagonistas & inhibidores , Diseño de Fármacos , Melanoma/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Proteínas Proto-Oncogénicas c-kit/antagonistas & inhibidores , Proliferación Celular , Humanos , Melanoma/genética , Melanoma/metabolismo , Melanoma/patología , Mutación , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas B-raf/genética , Células Tumorales Cultivadas
13.
Cell Chem Biol ; 25(11): 1414-1418.e3, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30122369

RESUMEN

Aldose reductase (AKR1B1), the key enzyme of the polyol pathway, plays a crucial role in the development of long-term complications affecting diabetic patients. Nevertheless, the expedience of inhibiting this enzyme to treat diabetic complications has failed, due to the emergence of side effects from compounds under development. Actually AKR1B1 is a Janus-faced enzyme which, besides ruling the polyol pathway, takes part in the antioxidant defense mechanism of the body. In this work we report the evidence that a class of compounds, characterized by a pyrazolo[1,5-a]pyrimidine core and an ionizable fragment, modulates differently the catalytic activity of the enzyme, depending on the presence of specific substrates such as sugar, toxic aldehydes, and glutathione conjugates of toxic aldehydes. The study stands out as a systematic attempt to generate aldose reductase differential inhibitors (ARDIs) intended to target long-term diabetic complications while leaving unaltered the detoxifying role of the enzyme.


Asunto(s)
Aldehído Reductasa/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Pirazoles/química , Pirazoles/farmacología , Piridinas/química , Piridinas/farmacología , Aldehído Reductasa/metabolismo , Complicaciones de la Diabetes/tratamiento farmacológico , Complicaciones de la Diabetes/metabolismo , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/metabolismo , Descubrimiento de Drogas , Humanos , Especificidad por Sustrato
14.
Artículo en Inglés | MEDLINE | ID: mdl-30619094

RESUMEN

Anaplastic thyroid carcinoma (ATC) is a malignant tumor of the thyroid gland, infrequent but with a very poor prognosis, as it rapidly causes death (mean survival of about 6 months). ATC treatment includes a multimodal protocol consisting of surgery, chemotherapy (doxorubicin and cisplatin), and hyperfractionated accelerated external beam radiotherapy (median patient survival of 10 months). For this reason, the identification of an effective systemic treatment for ATC would be a major advance in the management of this deadly thyroid cancer. The opportunity to test the sensitivity to different drugs of primary cells from ATC (pATC) cultures, obtained from each patients, could improve the effectiveness of the treatment. Then, the administration of inactive therapeutics could be avoided. Our aim is to investigate the antineoplastic effect of two tyrosine kinase inhibitors (TKIs; lenvatinib, vandetanib) in pATC obtained both from biopsy (biop-pATC), and from fine needle aspiration (FNA-pATC). The antiproliferative activity of lenvatinib and vandetanib was evaluated in 6 ATC patients, on biop-pATC, such as on FNA-pATC. A significant reduction of proliferation (obtained by WST-1 assay) vs. control was shown with lenvatinib and vandetanib in FNA-pATC, as well as in biop-pATC. The percentage of apoptosis in FNA-pATC, or biop-pATC, increased with both compounds dose-dependently. pATC cells from FNA, or biopsy, had a similar sensitivity to lenvatinib and vandetanib. In conclusion, primary cells (biop-pATC or FNA-pATC) have a similar sensitivity to TKIs, and lenvatinib and vandetanib are effective in reducing cell growth, increasing apoptosis in ATC. The possibility to test the sensitivity to different TKIs in each patient could open the way to personalized treatments, avoiding the administration of ineffective, and potentially dangerous, drugs.

15.
Eur J Med Chem ; 150: 491-505, 2018 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-29549836

RESUMEN

It is now known that "gain of function" mutations of RET (REarranged during Transfection) kinase are specific and key oncogenic events in the onset of thyroid gland cancers such as the Medullary Thyroid Carcinoma (MTC). Although a number of RET inhibitors exist and are capable of inhibiting RET variants, in which mutations are outside the enzyme active site, the majority becomes dramatically ineffective when mutations are within the protein active site (V804L and V804M). Pursuing a receptor-based virtual screening against the kinase domain of RET, we found that compound 5 is able to inhibit efficiently both wild type and V804L mutant RET. Compound 5 was able to significantly reduce proliferation of both commercially available TT cell lines and surgical thyroid tissues obtained from patients with MTC and displayed a suitable drug-like profile, thus standing out as a promising candidate for further development towards the treatment of clinically unresponsive MTC.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma Neuroendocrino/tratamiento farmacológico , Descubrimiento de Drogas , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-ret/antagonistas & inhibidores , Glándula Tiroides/efectos de los fármacos , Neoplasias de la Tiroides/tratamiento farmacológico , Antineoplásicos/síntesis química , Antineoplásicos/química , Carcinoma Neuroendocrino/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Proteínas Proto-Oncogénicas c-ret/genética , Proteínas Proto-Oncogénicas c-ret/metabolismo , Relación Estructura-Actividad , Glándula Tiroides/metabolismo , Glándula Tiroides/patología , Neoplasias de la Tiroides/metabolismo
16.
Eur J Pharm Biopharm ; 117: 276-285, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28456606

RESUMEN

Nano-sized colloidal carriers represent innovative drug delivery systems, as they allow a targeted and prolonged release of poorly water-soluble drugs, improving their bioavailability and modifying their pharmacokinetic parameters. In this work we describe cyclodextrin-based nanosponges, obtained through polimerization of ß-cyclodextrin with diphenyl carbonate as the cross-linking agent, loaded with a novel multi-effective heterocyclic compound, DB103, able to regulate key cellular events involved in the remodelling of vessels wall. Fabrication and drug-loading procedures, as well as physical-chemical characterization and drug-release profile of the novel colloidal system are reported. Results achieved demonstrate the ability of nanosponges to enclose efficiently the target drug and release it slowly and continuously, thus suggesting the exploitability of the novel system for the local therapy of vessels wall subjected to percutaneous intervention.


Asunto(s)
Reestenosis Coronaria , Vasos Coronarios , Ciclodextrinas/química , Sistemas de Liberación de Medicamentos/métodos , Nanopartículas/química , Intervención Coronaria Percutánea , Reestenosis Coronaria/tratamiento farmacológico , Reestenosis Coronaria/etiología , Vasos Coronarios/efectos de los fármacos , Vasos Coronarios/cirugía , Ciclodextrinas/administración & dosificación , Nanopartículas/administración & dosificación , Intervención Coronaria Percutánea/efectos adversos , Espectroscopía Infrarroja por Transformada de Fourier/métodos
17.
Future Med Chem ; 9(18): 2147-2166, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29098865

RESUMEN

AIM: Targeting aldose reductase enzyme with 2,4-thiazolidinedione-3-acetic acid derivatives having a bulky hydrophobic 3-arylquinazolinone residue. MATERIALS & METHODS: All the target compounds were structurally characterized by different spectroscopic methods and microanalysis, their aldose reductase inhibitory activities were evaluated, and binding modes were studied by molecular modeling. RESULTS: All the synthesized compounds proved to inhibit the target enzyme potently, exhibiting IC50 values in the nanomolar/low nanomolar range. Compound 5i (IC50 = 2.56 nM), the most active of the whole series, turned out to be almost 70-fold more active than the only marketed aldose reductase inhibitor epalrestat. CONCLUSION: This work represents a promising matrix for developing new potential therapeutic candidates for prevention of diabetic complications through targeting aldose reductase enzyme. [Formula: see text].


Asunto(s)
Acetatos/química , Aldehído Reductasa/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Quinazolinonas/química , Acetatos/metabolismo , Acetatos/farmacología , Aldehído Reductasa/metabolismo , Sitios de Unión , Dominio Catalítico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Pruebas de Enzimas , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Humanos , Concentración 50 Inhibidora , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Quinazolinonas/metabolismo , Quinazolinonas/farmacología , Tiazolidinedionas/química
18.
J Med Chem ; 59(13): 6547-52, 2016 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-27305384

RESUMEN

Three novel series of 1,2-benzisothiazole derivatives have been developed as inhibitors of carbonic anhydrase isoform IX. Compounds 5c and 5j, tested in vitro on the human colon cell line HT-29, blocked the growth of cells cultured under chemically induced hypoxic conditions, displaying a specific activity against cancer cells characterized by CAIX up-regulation. Moreover, a synergistic activity of 5c with SN-38 (the active metabolite of irinotecan) and 5-fluorouracil on cell proliferation under hypoxic conditions was demonstrated.


Asunto(s)
Antineoplásicos/farmacología , Anhidrasa Carbónica IX/antagonistas & inhibidores , Inhibidores de Anhidrasa Carbónica/farmacología , Tiazoles/farmacología , Antígenos de Neoplasias/metabolismo , Antineoplásicos/síntesis química , Antineoplásicos/química , Anhidrasa Carbónica IX/metabolismo , Inhibidores de Anhidrasa Carbónica/síntesis química , Inhibidores de Anhidrasa Carbónica/química , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Células HT29 , Humanos , Estructura Molecular , Relación Estructura-Actividad , Tiazoles/síntesis química , Tiazoles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA