Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Intervalo de año de publicación
1.
Prenat Diagn ; 41(13): 1615-1623, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34676573

RESUMEN

BACKGROUND/OBJECTIVES: Prenatal myelomeningocele (MMC) repair has been shown to improve neurological outcomes. It has been suggested that decreases in the hysterotomy diameter during surgery can improve perinatal outcomes without altering neurologic outcomes. The objective of this study is to describe and compare the main maternal and fetal outcomes of fetuses undergoing open surgery for MMC repair, through the different modifications (standard-classical, mini-hysterotomy, and microneurosurgery). DATA SOURCE: MEDLINE, EMBASE, Cochrane Central Register of Controlled Trials, Ovid, SciELO, LILACS, PROSPERO. RESULTS: From a total of 112 studies, seven case series were selected including 399 fetuses with open fetal surgery, five studies using the classical technique (n = 181), one with mini-hysterotomy (n = 176), and one with the microneurosurgery technique (n = 42). The mini-hysterotomy and microneurosurgery techniques presented a lower risk of preterm delivery (21.4% and 30%, respectively) compared to the classic technique (47.3%), premature rupture of membranes (78%, 62%, and 72.5 %, respectively), oligohydramnios (0% and 72.5%, respectively), dehiscence of hysterotomy, maintaining the same frequency of Chiari reversion (78%, 62%, and 72.5%, respectively), postnatal correction requirement (0%, 4.8%, and 5.8%, respectively), and lower frequency of requirement for a ventriculoperitoneal shunt placement (13.0%, 7.5%, and 29.1%, respectively). CONCLUSION: The least invasive techniques (minihysterotomy-microneurosurgery) are possible and reproduceable, as they are associated with better maternal and perinatal outcomes.


Asunto(s)
Terapias Fetales/normas , Edad Gestacional , Disrafia Espinal/cirugía , Derivación Ventriculoperitoneal/métodos , Adulto , Femenino , Terapias Fetales/métodos , Fetoscopía/métodos , Humanos , Embarazo , Derivación Ventriculoperitoneal/tendencias
2.
Int Arch Allergy Immunol ; 179(2): 89-101, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30904917

RESUMEN

BACKGROUND: Papular urticaria (PU) is a common insect bite skin hypersensitivity in tropical countries. In order to gain insight into its causal allergens, we aimed to evaluate cellular and humoral immune responses to the recombinant salivary antigen Cte f 2 from the cat flea Ctenocephalides felis. METHOD: Sixty patients with PU and 27 healthy controls were included in this study. Specific IgE, IgG, IgG1, and IgG4 against Cte f 2 and C. felis extract were determined by ELISA. The T-cell response was analyzed using a carboxyfluorescein succinimidyl ester (CFSE)-based dilution assay and Th1/Th2/Th17 cytokine measurements. In addition, a proteomic analysis of IgG and IgE reactive spots of C. felis extract was performed. RESULTS: The frequency of IgE sensitization to Cte f 2 was similar between patients (36.7%) and controls (40.7%). The specific IgE, IgG1, and IgG4 responses to Cte f 2 and C. felis extract were not significantly different between patients and controls. Among the 3 conditions (i.e., Cte f 2, C. felis extract, and only medium) Cte f 2 was the strongest inducer of CD3+CD4+ proliferation in the patients; however, the mean response was not significantly different from those in controls (Cte f 2: 4.5 vs. 2.5%; p = 0.46). No salivary proteins were identified in C. felis, and most of the spots were identified as muscle-skeletal components (tropomyosin, actin, myosin, and ankirin). CONCLUSIONS: Cte f 2 induces IgE and IgG production as well as T-cell proliferation in children living in a geographical area where PU induced by a flea bite is common. The use of C. felis extract is not recommended for the study of bite-induced hypersensitivity disease since salivary antigens are not well represented.


Asunto(s)
Alérgenos/inmunología , Ctenocephalides/inmunología , Inmunidad Celular , Inmunidad Humoral , Enfermedades Cutáneas Vesiculoampollosas/inmunología , Urticaria/inmunología , Alérgenos/química , Secuencia de Aminoácidos , Animales , Artrópodos/inmunología , Niño , Citocinas/metabolismo , Femenino , Humanos , Inmunización , Inmunoglobulina E/inmunología , Activación de Linfocitos/inmunología , Linfocitos/inmunología , Linfocitos/metabolismo , Masculino , Ratones , Proteómica/métodos , Enfermedades Cutáneas Vesiculoampollosas/diagnóstico , Enfermedades Cutáneas Vesiculoampollosas/metabolismo , Urticaria/diagnóstico , Urticaria/metabolismo
3.
Malar J ; 18(1): 384, 2019 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-31791331

RESUMEN

BACKGROUND: Knockdown resistance (kdr) is a well-characterized target-site insecticide resistance mechanism that is associated with DDT and pyrethroid resistance. Even though insecticide resistance to pyrethroids and DDT have been reported in Anopheles albimanus, Anopheles benarrochi sensu lato (s.l.), Anopheles darlingi, Anopheles nuneztovari s.l., and Anopheles pseudopunctipennis s.l. malaria vectors in Latin America, there is a knowledge gap on the role that kdr resistance mechanisms play in this resistance. The aim of this study was to establish the role that kdr mechanisms play in pyrethroid and DDT resistance in the main malaria vectors in Colombia, in addition to previously reported metabolic resistance mechanisms, such as mixed function oxidases (MFO) and nonspecific esterases (NSE) enzyme families. METHODS: Surviving (n = 62) and dead (n = 67) An. nuneztovari s.l., An. darlingi and An. albimanus mosquitoes exposed to diagnostic concentrations of DDT and pyrethroid insecticides were used to amplify and sequence a ~ 225 bp fragment of the voltage-gated sodium channels (VGSC) gene. This fragment spanning codons 1010, 1013 and 1014 at the S6 segment of domain II to identify point mutations, which have been associated with insecticide resistance in different species of Anopheles malaria vectors. RESULTS: No kdr mutations were detected in the coding sequence of this fragment in 129 samples, 62 surviving mosquitoes and 67 dead mosquitoes, of An. darlingi, An. nuneztovari s.l. and An. albimanus. CONCLUSION: Mutations in the VGSC gene, most frequently reported in other species of the genus Anopheles resistant to pyrethroid and DDT, are not associated with the low-intensity resistance detected to these insecticides in some populations of the main malaria vectors in Colombia. These results suggest that metabolic resistance mechanisms previously reported in these populations might be responsible for the resistance observed.


Asunto(s)
Anopheles/genética , DDT/farmacología , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Mosquitos Vectores/genética , Piretrinas/farmacología , Animales , Anopheles/efectos de los fármacos , Colombia , Malaria , Especificidad de la Especie
4.
Malar J ; 15(1): 407, 2016 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-27515166

RESUMEN

BACKGROUND: A proper identification of malaria vectors is essential for any attempt to control this disease. Between 40 and 47 Anopheles species have been recorded in Colombia, and eight species complexes have been identified in the last decade. An update of Anopheles species distribution and its relationship with malaria is required, particularly for newly identified members of species complexes. METHODS: A cross-sectional entomological study was conducted at 70 localities in the highest malaria transmission areas in Colombia. In each locality, immature and adult mosquitoes were collected. All specimens were determined using morphological characters and confirmed used restriction profiles of Internal Transcribed Spacer 2 (PCR-RFLP-ITS2), and Cytochrome c Oxidase I (COI) sequence gene. To detect natural Plasmodium infections, enzyme-linked immunosorbent assay and nested PCR analysis were used. Distribution of Anopheles species was spatially associated with malaria incidence. RESULTS: A total of 1736 larvae and 12,052 adult mosquitoes were determined in the 70 localities. Thirteen Anopheles species were identified. COI sequence analysis suggested 4 new lineages for Colombia: for Anopheles albimanus (An. albimanus B), Anopheles pseudopunctipennis s.l., Anopheles neivai (An. neivai nr. neivai 4), and Anopheles apicimacula. Two members of species complexes were identified, as: Anopheles nuneztovari C, and Anopheles albitarsis I. Another seven species were confirmed. Four mosquitoes were infected with Plasmodium species, An. albimanus B and An. nuneztovari C. In Northwest of Colombia, An. nuneztovari C, An. albimanus, and Anopheles darlingi were present in the municipalities with highest annual parasitic index (API) (>35 cases/1000 inhabitants). In the north of South Pacific coast, with a similar API, An. nuneztovari C were widely distributed inland, and the main species in coastal regions were An. albimanus B and An. neivai s.l. In the South Pacific coast bordering with Ecuador, 3 Anopheles species were found in municipalities with high API (15-88 cases/1000 inhabitants): An. albimanus B, Anopheles calderoni and An. neivai s.l. CONCLUSIONS: In the highest malaria areas of Colombia, 13 Anopheles species and four new lineages were found, which highlights the need for updating the species distribution. A DNA barcode analysis allowed the taxonomic identification to be refined, particularly for species complexes, and to improve the further understanding of their relation with malaria transmission.


Asunto(s)
Anopheles/clasificación , Anopheles/crecimiento & desarrollo , Malaria/epidemiología , Mosquitos Vectores/clasificación , Mosquitos Vectores/crecimiento & desarrollo , Filogeografía , Topografía Médica , Animales , Análisis por Conglomerados , Colombia/epidemiología , Estudios Transversales , ADN Protozoario/química , ADN Protozoario/genética , ADN Espaciador Ribosómico/química , ADN Espaciador Ribosómico/genética , Complejo IV de Transporte de Electrones/genética , Femenino , Humanos , Incidencia , Masculino , Filogenia , Reacción en Cadena de la Polimerasa , Polimorfismo de Longitud del Fragmento de Restricción , Análisis de Secuencia de ADN , Análisis Espacial
5.
BMC Public Health ; 16: 221, 2016 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-26940004

RESUMEN

BACKGROUND: Malaria control in South America has vastly improved in the past decade, leading to a decrease in the malaria burden. Despite the progress, large parts of the continent continue to be at risk of malaria transmission, especially in northern South America. The objectives of this study were to assess the risk of malaria transmission and vector exposure in northern South America using multi-criteria decision analysis. METHODS: The risk of malaria transmission and vector exposure in northern South America was assessed using multi-criteria decision analysis, in which expert opinions were taken on the key environmental and population risk factors. RESULTS: Results from our risk maps indicated areas of moderate-to-high risk along rivers in the Amazon basin, along the coasts of the Guianas, the Pacific coast of Colombia and northern Colombia, in parts of Peru and Bolivia and within the Brazilian Amazon. When validated with occurrence records for malaria, An. darlingi, An. albimanus and An. nuneztovari s.l., t-test results indicated that risk scores at occurrence locations were significantly higher (p < 0.0001) than a control group of geographically random points. CONCLUSION: In this study, we produced risk maps based on expert opinion on the spatial representation of risk of potential vector exposure and malaria transmission. The findings provide information to the public health decision maker/policy makers to give additional attention to the spatial planning of effective vector control measures. Therefore, as the region tackles the challenge of malaria elimination, prioritizing areas for interventions by using spatially accurate, high-resolution (1 km or less) risk maps may guide targeted control and help reduce the disease burden in the region.


Asunto(s)
Técnicas de Apoyo para la Decisión , Malaria/epidemiología , Medición de Riesgo/métodos , Animales , Anopheles , Humanos , Insectos Vectores , Malaria/prevención & control , Factores de Riesgo , América del Sur/epidemiología
7.
Malar J ; 14: 256, 2015 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-26104785

RESUMEN

BACKGROUND: Anopheles calderoni was first recognized in Colombia in 2010 as this species had been misidentified as Anopheles punctimacula due to morphological similarities. An. calderoni is considered a malaria vector in Peru and has been found naturally infected with Plasmodium falciparum in Colombia. However, its biting behaviour, population dynamics and epidemiological importance have not been well described for Colombia. METHODS: To assess the contribution of An. calderoni to malaria transmission and its human biting behaviour and spatial/temporal distribution in the southwest of Colombia, human landing catches (HLC) and larval collections were carried out in a cross-sectional, entomological study in 22 localities between 2011 and 2012, and a longitudinal study was performed in the Boca de Prieta locality in Olaya Herrera municipality between July 2012 and June 2013. All mosquitoes determined as An. calderoni were tested by ELISA to establish infection with Plasmodium spp. RESULTS: Larvae of An. calderoni were found in four localities in 12 out of 244 breeding sites inspected. An. calderoni adults were collected in 14 out of 22 localities during the cross-sectional study and represented 41.3% (459 of 1,111) of the collected adult specimens. Other species found were Anopheles albimanus (54.7%), Anopheles apicimacula (2.1%), Anopheles neivai (1.7%), and Anopheles argyritarsis (0.2%). In the localities that reported the highest malaria Annual Parasite Index (>10/1,000 inhabitants) during the year of sampling, An. calderoni was the predominant species (>90% of the specimens collected). In the longitudinal study, 1,528 An. calderoni were collected by HLC with highest biting rates in February, May and June 2013, periods of high precipitation. In general, the species showed a preference to bite outdoors (p < 0.001). In Boca de Prieta, two specimens of An. calderoni were ELISA positive for Plasmodium circumsporozoite protein: one for P. falciparum and one for Plasmodium vivax VK-210. This represents an overall sporozoite rate of 0.1% and an annual entomological inoculation rate of 2.84 infective bites/human/year. CONCLUSIONS: This study shows that An. calderoni is a primary malaria vector in the southwest of Colombia. Its observed preference for outdoor biting is a major challenge for malaria control.


Asunto(s)
Anopheles/fisiología , Anopheles/parasitología , Insectos Vectores/fisiología , Insectos Vectores/parasitología , Malaria/epidemiología , Distribución Animal , Animales , Colombia/epidemiología , Estudios Transversales , Conducta Alimentaria , Humanos , Mordeduras y Picaduras de Insectos/epidemiología , Mordeduras y Picaduras de Insectos/etiología , Estudios Longitudinales , Malaria/parasitología , Plasmodium , Estaciones del Año , Especificidad de la Especie
8.
Malar J ; 14: 476, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26620401

RESUMEN

BACKGROUND: Malaria incidence has recently decreased globally and, as malaria elimination is envisioned as a possibility by the health authorities, guidance is needed to strengthen malaria control strategies. Larval source treatment, which could complement routine vector control strategies, requires knowledge regarding the Anopheles larval habitats. METHODS: A cross-sectional study was conducted in three of the most malaria-endemic regions in Colombia. A total of 1116 potential larval habitats in 70 villages were sampled in three states located in western Colombia: Cordoba, Valle del Cauca and Nariño. RESULTS: Overall, 17.5 % (195) of the potential larval habitats were found positive for different Anopheles species. A total of 1683 larvae were identified belonging to seven species: Anopheles albimanus, Anopheles calderoni, Anopheles darlingi, Anopheles neomaculipalpus, Anopheles nuneztovari s.l., Anopheles pseudopunctipennis, and Anopheles triannulatus. The most widely distributed species was An. nuneztovari s.l., which was found mainly in human-made fishponds in Cordoba and temporary puddles in Valle del Cauca. Anopheles albimanus and An. calderoni were associated with human-made wells or excavation sites in Nariño. Cordoba displayed the greatest Anopheles species diversity with a total of six species (Shannon diversity index H': 1.063). Although Valle del Cauca had four species, one more than Nariño, the diversity was lower because only one species predominated, An. nuneztovari s.l. The larval habitats with the highest Shannon diversity index were lagoons (H': 1.079) and fishponds (H': 1.009) in Cordoba, excavation sites in Nariño (H': 0.620) and puddles in Valle del Cauca (H': 0.764). CONCLUSIONS: This study provides important information regarding the larval habitats of the main malaria vectors in the most malaria-endemic regions of Colombia, which will be useful in guiding larval control operations.


Asunto(s)
Anopheles/crecimiento & desarrollo , Ecosistema , Insectos Vectores/crecimiento & desarrollo , Malaria/transmisión , Animales , Conducta Animal , Colombia/epidemiología , Estudios Transversales , Enfermedades Endémicas , Humanos , Larva/crecimiento & desarrollo , Malaria/epidemiología
9.
Malar J ; 14: 519, 2015 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-26694047

RESUMEN

With malaria control in Latin America firmly established in most countries and a growing number of these countries in the pre-elimination phase, malaria elimination appears feasible. A review of the literature indicates that malaria elimination in this region will be difficult without locally tailored strategies for vector control, which depend on more research on vector ecology, genetics and behavioural responses to environmental changes, such as those caused by land cover alterations, and human population movements. An essential way to bridge the knowledge gap and improve vector control is through risk mapping. Malaria risk maps based on statistical and knowledge-based modelling can elucidate the links between environmental factors and malaria vectors, explain interactions between environmental changes and vector dynamics, and provide a heuristic to demonstrate how the environment shapes malaria transmission. To increase the utility of risk mapping in guiding vector control activities, definitions of malaria risk for mapping purposes must be standardized. The maps must also possess appropriate scale and resolution in order to become essential tools in integrated vector management (IVM), so that planners can target areas in greatest need of control measures. Fully integrating risk mapping into vector control programmes will make interventions more evidence-based, making malaria elimination more attainable.


Asunto(s)
Malaria/epidemiología , Malaria/prevención & control , Control de Mosquitos/organización & administración , Topografía Médica , Humanos , América Latina/epidemiología , Medición de Riesgo
10.
Mem Inst Oswaldo Cruz ; 109(7): 952­956, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25411002

RESUMEN

Malaria in La Guajira, the most northern state of Colombia, shows two different epidemiological patterns. Malaria is endemic in the municipality of Dibulla whereas in Riohacha it is characterised by sporadic outbreaks. This study aimed to establish whether differences in transmission patterns could be attributed to different vector species. The most abundant adult female species were Anopheles aquasalis, exclusive to Riohacha, and Anopheles darlingi, restricted to Dibulla. Anopheles mosquitoes were identified using morphology and the molecular markers internal transcribed spacer 2 and cytochrome c oxidase I. All specimens (n = 1,393) were tested by ELISA to determine natural infection rates with Plasmodium falciparum and Plasmodium vivax. An. darlingi was positive for P. vivax 210, with an infection rate of 0.355% and an entomological inoculation rate of 15.87 infective bites/person/year. Anopheles albimanus larvae were the most common species in Riohacha, found in temporary swamps; in contrast, in Dibulla An. darlingi were detected mainly in permanent streams. Distinctive species composition and larval habitats in each municipality may explain the differences in Plasmodium transmission and suggest different local strategies should be used for vector control.


Asunto(s)
Anopheles/clasificación , Insectos Vectores/clasificación , Malaria/transmisión , Plasmodium , Animales , Anopheles/anatomía & histología , Biomarcadores , Ciudades , Colombia , ADN Intergénico , Ensayo de Inmunoadsorción Enzimática , Femenino , Geografía , Humanos , Malaria/parasitología , Especificidad de la Especie
11.
Mem Inst Oswaldo Cruz ; 109(4): 473-9, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25075785

RESUMEN

Since 1984, Anopheles (Kerteszia) lepidotus has been considered a mosquito species that is involved in the transmission of malaria in Colombia, after having been incriminated as such with epidemiological evidence from a malaria outbreak in Cunday-Villarrica, Tolima. Subsequent morphological analyses of females captured in the same place and at the time of the outbreak showed that the species responsible for the transmission was not An. lepidotus, but rather Anopheles pholidotus. However, the associated morphological stages and DNA sequences of An. pholidotus from the foci of Cunday-Villarrica had not been analysed. Using samples that were caught recently from the outbreak region, the purpose of this study was to provide updated and additional information by analysing the morphology of female mosquitoes, the genitalia of male mosquitoes and fourth instar larvae of An. pholidotus, which was confirmed with DNA sequences of cytochrome oxidase I and rDNA internal transcribed spacer. A total of 1,596 adult females were collected in addition to 37 larval collections in bromeliads. Furthermore, 141 adult females, which were captured from the same area in the years 1981-1982, were analysed morphologically. Ninety-five DNA sequences were analysed for this study. Morphological and molecular analyses showed that the species present in this region corresponds to An. pholidotus. Given the absence of An. lepidotus, even in recent years, we consider that the species of mosquitoes that was previously incriminated as the malaria vector during the outbreak was indeed An. pholidotus, thus ending the controversy.


Asunto(s)
Anopheles/anatomía & histología , Anopheles/genética , Genitales Masculinos/anatomía & histología , Animales , Anopheles/clasificación , Secuencia de Bases , Colombia , ADN Mitocondrial/genética , ADN Espaciador Ribosómico/genética , Femenino , Larva/anatomía & histología , Larva/clasificación , Larva/genética , Masculino , Datos de Secuencia Molecular , Filogenia
12.
Mem Inst Oswaldo Cruz ; 108(8): 1057-64, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24402159

RESUMEN

On the southwest Pacific Coast of Colombia, a field study was initiated to determine the human-vector association between Anopheles (Kerteszia) neivai and fishermen, including their nearby houses. Mosquitoes were collected over 24-h periods from mangrove swamps, marshlands and fishing vessels in three locations, as well as in and around the houses of fishermen. A total of 6,382 mosquitoes were collected. An. neivai was most abundant in mangroves and fishing canoes (90.8%), while Anopheles albimanus was found indoors (82%) and outdoors (73%). One An. neivai and one An. albimanus collected during fishing activities in canoes were positive for Plasmodium vivax , whereas one female An. neivai collected in a mangrove was positive for P. vivax . In the mangroves and fishing canoes, An. neivai demonstrated biting activity throughout the day, peaking between 06:00 pm-07:00 pm and there were two minor peaks at dusk and dawn. These peaks coincided with fishing activities in the marshlands and mangroves, a situation that places the fishermen at risk of contracting malaria when they are performing their daily activities. It is recommended that protective measures be implemented to reduce the risk that fishermen will contract malaria.


Asunto(s)
Anopheles/fisiología , Mordeduras y Picaduras/epidemiología , Conducta Alimentaria/fisiología , Explotaciones Pesqueras , Insectos Vectores/fisiología , Animales , Anopheles/clasificación , Anopheles/parasitología , Colombia/epidemiología , Femenino , Humanos , Insectos Vectores/clasificación , Insectos Vectores/parasitología , Malaria/epidemiología , Malaria/transmisión , Plasmodium/aislamiento & purificación , Densidad de Población
13.
Genes (Basel) ; 14(2)2023 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-36833271

RESUMEN

The Anopheles subgenus Kerteszia is a poorly understood group of mosquitoes that includes several species of medical importance. Although there are currently twelve recognized species in the subgenus, previous studies have shown that this is likely to be an underestimate of species diversity. Here, we undertake a baseline study of species delimitation using the barcode region of the mtDNA COI gene to explore species diversity among a geographically and taxonomically diverse range of Kerteszia specimens. Beginning with 10 of 12 morphologically identified Kerteszia species spanning eight countries, species delimitation analyses indicated a high degree of cryptic diversity. Overall, our analyses found support for at least 28 species clusters within the subgenus Kerteszia. The most diverse taxon was Anopheles neivai, a known malaria vector, with eight species clusters. Five other species taxa showed strong signatures of species complex structure, among them Anopheles bellator, which is also considered a malaria vector. There was some evidence for species structure within An. homunculus, although the results were equivocal across delimitation analyses. The current study, therefore, suggests that species diversity within the subgenus Kerteszia has been grossly underestimated. Further work will be required to build on this molecular characterization of species diversity and will rely on genomic level approaches and additional morphological data to test these species hypotheses.


Asunto(s)
Anopheles , Malaria , Animales , Anopheles/genética , Mosquitos Vectores , ADN Mitocondrial/genética
14.
Parasit Vectors ; 16(1): 21, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36670470

RESUMEN

BACKGROUND: The continued spread of insecticide resistance in mosquito vectors of malaria and arboviral diseases may lead to operational failure of insecticide-based interventions if resistance is not monitored and managed efficiently. This study aimed to develop and validate a new WHO glass bottle bioassay method as an alternative to the WHO standard insecticide tube test to monitor mosquito susceptibility to new public health insecticides with particular modes of action, physical properties or both. METHODS: A multi-centre study involving 21 laboratories worldwide generated data on the susceptibility of seven mosquito species (Aedes aegypti, Aedes albopictus, Anopheles gambiae sensu stricto [An. gambiae s.s.], Anopheles funestus, Anopheles stephensi, Anopheles minimus and Anopheles albimanus) to seven public health insecticides in five classes, including pyrethroids (metofluthrin, prallethrin and transfluthrin), neonicotinoids (clothianidin), pyrroles (chlorfenapyr), juvenile hormone mimics (pyriproxyfen) and butenolides (flupyradifurone), in glass bottle assays. The data were analysed using a Bayesian binomial model to determine the concentration-response curves for each insecticide-species combination and to assess the within-bioassay variability in the susceptibility endpoints, namely the concentration that kills 50% and 99% of the test population (LC50 and LC99, respectively) and the concentration that inhibits oviposition of the test population by 50% and 99% (OI50 and OI99), to measure mortality and the sterilizing effect, respectively. RESULTS: Overall, about 200,000 mosquitoes were tested with the new bottle bioassay, and LC50/LC99 or OI50/OI99 values were determined for all insecticides. Variation was seen between laboratories in estimates for some mosquito species-insecticide combinations, while other test results were consistent. The variation was generally greater with transfluthrin and flupyradifurone than with the other compounds tested, especially against Anopheles species. Overall, the mean within-bioassay variability in mortality and oviposition inhibition were < 10% for most mosquito species-insecticide combinations. CONCLUSION: Our findings, based on the largest susceptibility dataset ever produced on mosquitoes, showed that the new WHO bottle bioassay is adequate for evaluating mosquito susceptibility to new and promising public health insecticides currently deployed for vector control. The datasets presented in this study have been used recently by the WHO to establish 17 new insecticide discriminating concentrations (DCs) for either Aedes spp. or Anopheles spp. The bottle bioassay and DCs can now be widely used to monitor baseline insecticide susceptibility of wild populations of vectors of malaria and Aedes-borne diseases worldwide.


Asunto(s)
Anopheles , Insecticidas , Malaria , Piretrinas , Animales , Femenino , Insecticidas/farmacología , Mosquitos Vectores , Salud Pública , Teorema de Bayes , Control de Mosquitos/métodos , Piretrinas/farmacología , Resistencia a los Insecticidas , Bioensayo , Organización Mundial de la Salud
15.
Int J Health Geogr ; 11: 13, 2012 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-22545756

RESUMEN

BACKGROUND: Anopheles albimanus is among the most important vectors of human malaria in Mesoamerica and the Caribbean Basin (M-C). Here, we use topographic data and 1950-2000 climate (near present), and future climate (2080) layers obtained from general circulation models (GCMs) to project the probability of the species' presence, p(s), using the species distribution model MaxEnt. RESULTS: The projected near-present distribution parameterized with 314 presence points related well to the known geographic distribution in the study region. Different model experiments suggest that the range of An. albimanus based on near-present climate surfaces covered at least 1.27 million km² in the M-C, although 2080 range was projected to decrease to 1.19 million km². Modeled p(s) was generally highest in Mesoamerica where many of the original specimens were collected. MaxEnt projected near-present maximum elevation at 1,937 m whereas 2080 maximum elevation was projected at 2,118 m. 2080 climate scenarios generally showed increased p(s) in Mesoamerica, although results varied for northern South America and no major range expansion into the mid-latitudes was projected by 2080. CONCLUSIONS: MaxEnt experiments with near present and future climate data suggest that An. albimanus is likely to invade high-altitude (>2,000 m) areas by 2080 and therefore place many more people at risk of malaria in the M-C region even though latitudinal range expansion may be limited.


Asunto(s)
Anopheles , Animales , Región del Caribe , América Central , Clima , Cambio Climático , Demografía/estadística & datos numéricos , Demografía/tendencias , Insectos Vectores
16.
Mem Inst Oswaldo Cruz ; 106 Suppl 1: 223-38, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21881778

RESUMEN

Here we present a comprehensive review of the literature on the vectorial importance of the major Anopheles malaria vectors in Colombia. We provide basic information on the geographical distribution, altitudinal range, immature habitats, adult behaviour, feeding preferences and anthropophily, endophily and infectivity rates. We additionally review information on the life cycle, longevity and population fluctuation of Colombian Anopheles species. Emphasis was placed on the primary vectors that have been epidemiologically incriminated in malaria transmission: Anopheles darlingi, Anopheles albimanus and Anopheles nuneztovari. The role of a selection of local, regional or secondary vectors (e.g., Anopheles pseudopunctipennis and Anopheles neivai) is also discussed. We highlight the importance of combining biological, morphological and molecular data for the correct taxonomical determination of a given species, particularly for members of the species complexes. We likewise emphasise the importance of studying the bionomics of primary and secondary vectors along with an examination of the local conditions affecting the transmission of malaria. The presence and spread of the major vectors and the emergence of secondary species capable of transmitting human Plasmodia are of great interest. When selecting control measures, the anopheline diversity in the region must be considered. Variation in macroclimate conditions over a species' geographical range must be well understood and targeted to plan effective control measures based on the population dynamics of the local Anopheles species.


Asunto(s)
Anopheles/clasificación , Insectos Vectores/clasificación , Malaria/transmisión , Animales , Colombia , Ecosistema , Humanos , Dinámica Poblacional , Estaciones del Año
17.
Mem Inst Oswaldo Cruz ; 105(7): 899-903, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21120360

RESUMEN

The presence of Anopheles (Nyssorhynchus) dunhami Causey in Colombia (Department of Amazonas) is confirmed for the first time through direct comparison of mtDNA cytochrome c oxidase I (COI) barcodes and nuclear rDNA second internal transcribed spacer (ITS2) sequences with topotypic specimens of An. dunhami from Tefé, Brazil. An. dunhami was identified through retrospective correlation of DNA sequences following misidentification as Anopheles nuneztovari s.l. using available morphological keys for Colombian mosquitoes. That An. dunhami occurs in Colombia and also possibly throughout the Amazon Basin, is of importance to vector control programs, as this non-vector species is morphologically similar to known malaria vectors including An. nuneztovari, Anopheles oswaldoi and Anopheles trinkae. Species identification of An. dunhami and differentiation from these closely related species are highly robust using either DNA ITS2 sequences or COI DNA barcode. DNA methods are advocated for future differentiation of these often sympatric taxa in South America.


Asunto(s)
Anopheles/genética , ADN Espaciador Ribosómico/genética , Complejo IV de Transporte de Electrones/genética , Animales , Anopheles/clasificación , Anopheles/enzimología , Colombia , ADN Intergénico/genética , ADN Mitocondrial/genética , ADN Ribosómico/genética , Análisis de Secuencia de ADN , Especificidad de la Especie
18.
Mem Inst Oswaldo Cruz ; 104(1): 18-26, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19274371

RESUMEN

In order to establish the insecticide susceptibility status for Anopheles darlingi in Colombia, and as part of the National Network on Insecticide Resistance Surveillance, five populations of insects from three Colombian states were evaluated. Standardised WHO and CDC bottle bioassays, in addition to microplate biochemical assays, were conducted. Populations with mortality rates below 80% in the bioassays were considered resistant. All field populations were susceptible to deltamethrin, permethrin, malathion and fenitrothion. Resistance to lambda-cyhalothrin and DDT was detected in the Amé-Beté population using both bioassay methods with mortality rates of 65-75%. Enzyme levels related to insecticide resistance, including mixed function oxidases (MFO), non-specific esterases (NSE), glutathione S-transferases and modified acetylcholinesterase were evaluated in all populations and compared with a susceptible natural strain. Only mosquitoes from Amé-Beté presented significantly increased levels of both MFO and NSE, consistent with the low mortalities found in this population. The continued use of lambda-cyhalothrin for An. darlingi control in this locality has resulted in a natural resistance to this insecticide. In addition, DDT resistance is still present in this population, although this insecticide has not been used in Colombia since 1992. Increased metabolism through MFO and NSE may be involved in cross-resistance between lambda-cyhalothrin and DDT, although kdr-type nerve insensitivity cannot be discarded as a possible hypothesis. Additional research, including development of a kdr specific assay for An. darlingi should be conducted in future studies. Our data demonstrates the urgent need to develop local insecticide resistance management and surveillance programs throughout Colombia.


Asunto(s)
Anopheles/enzimología , Esterasas/metabolismo , Insectos Vectores/enzimología , Insecticidas/farmacología , Oxidorreductasas/metabolismo , Animales , Anopheles/efectos de los fármacos , Bioensayo , Colombia , DDT/farmacología , Femenino , Insectos Vectores/efectos de los fármacos , Resistencia a los Insecticidas , Nitrilos/farmacología , Piretrinas/farmacología
19.
Parasitol Res ; 105(5): 1399-409, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19655174

RESUMEN

Field populations of Colombian malaria vector Anopheles (N.) nuneztovari were studied using World Health Organization (WHO) and Center for Disease Control and Prevention (CDC) bioassay techniques and through the use of biochemical microplate-based assays for resistance enzymes. Insecticides evaluated included the pyrethroids lambda-cyhalothrin and deltamethrin, organophosphates malathion and fenitrothion, and the organochlorine dichlorodiphenyltrichloroethane (DDT). Study sites selected were based upon malaria incidence, vector presence, and control activities in Colombia. Early stage selection for reduced susceptibility was observed in the bioassays for some locations. Data from the WHO and CDC bioassay methods were broadly consistent, with some differences noted. Evidence is presented for low-level initial selection of some resistance mechanisms such as mixed-function oxidases and modified acetylcholinesterase. Data from the site Encharcazón implies that selection for DDT-pyrethroid cross-resistance has occurred, though not likely at a level that currently threatens vector control by either class of insecticides, and further implies that knockdown resistance (kdr) may be present in those populations. Further studies using synergists and development of a kdr-specific assay for A. nuneztovari thus become priorities. The resistance levels to lambda-cyhalothrin and deltamethrin found in the Encharcazón population are of concern since these two insecticides are currently used for both indoor spraying and treated nets. In addition, the resistance to fenitrothion, the indoor spray insecticide mostly used for this species due to their exophilic behavior, found in the El Zulia population, makes urgent to find alternatives for chemical control in these areas. These data provide the initial baselines for insecticide susceptibility profiles for A. nuneztovari in Colombia and the first report of insecticide resistance in this vector.


Asunto(s)
Anopheles/efectos de los fármacos , Vectores de Enfermedades , Resistencia a Medicamentos , Insecticidas/farmacología , Organofosfatos/farmacología , Piretrinas/farmacología , Animales , Colombia/epidemiología , Enfermedades Endémicas , Enzimas/metabolismo , Femenino , Humanos , Insecticidas/metabolismo , Malaria/epidemiología , Organofosfatos/metabolismo , Piretrinas/metabolismo , Análisis de Supervivencia
20.
Biomedica ; 28(1): 18-24, 2008 Mar.
Artículo en Español | MEDLINE | ID: mdl-18645658

RESUMEN

The relevance of the medical entomology was considered with respect to current framework of malaria control programs in Colombia. A responsibility is indicated for balancing control efforts along with providing information on the malaria vectors. This knowledge must be acquired in order to focus the related activities that are required. The malaria control program must be based on results of local entomological surveillance, and the data must be in a form to give practical answers to questions regarding the control program. Difficulties in undertaking the required studies are described, particularly regarding the taxonomic identification of Colombian Anopheles in Colombia and which of these can be incriminated as malaria vectors.


Asunto(s)
Entomología , Malaria , Vigilancia de la Población , Salud Pública , Animales , Anopheles/clasificación , Anopheles/microbiología , Anopheles/parasitología , Colombia/epidemiología , Entomología/educación , Humanos , Insectos Vectores/clasificación , Insectos Vectores/microbiología , Insectos Vectores/parasitología , Malaria/epidemiología , Malaria/prevención & control , Salud Pública/educación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA