Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 619(7969): 311-316, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37438592

RESUMEN

Coral reefs are losing the capacity to sustain their biological functions1. In addition to other well-known stressors, such as climatic change and overfishing1, plastic pollution is an emerging threat to coral reefs, spreading throughout reef food webs2, and increasing disease transmission and structural damage to reef organisms3. Although recognized as a global concern4, the distribution and quantity of plastics trapped in the world's coral reefs remains uncertain3. Here we survey 84 shallow and deep coral ecosystems at 25 locations across the Pacific, Atlantic and Indian ocean basins for anthropogenic macrodebris (pollution by human-generated objects larger than 5 centimetres, including plastics), performing 1,231 transects. Our results show anthropogenic debris in 77 out of the 84 reefs surveyed, including in some of Earth's most remote and near-pristine reefs, such as in uninhabited central Pacific atolls. Macroplastics represent 88% of the anthropogenic debris, and, like other debris types, peak in deeper reefs (mesophotic zones at 30-150 metres depth), with fishing activities as the main source of plastics in most areas. These findings contrast with the global pattern observed in other nearshore marine ecosystems, where macroplastic densities decrease with depth and are dominated by consumer items5. As the world moves towards a global treaty to tackle plastic pollution6, understanding its distribution and drivers provides key information to help to design the strategies needed to address this ubiquitous threat.


Asunto(s)
Arrecifes de Coral , Plásticos , Plásticos/efectos adversos , Plásticos/análisis , Cadena Alimentaria , Océano Pacífico , Océano Atlántico , Océano Índico , Tamaño de la Partícula , Actividades Humanas , Caza
3.
Rev Fish Biol Fish ; 33(2): 349-374, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35968251

RESUMEN

Fisheries are highly complex social-ecological systems that often face 'wicked' problems from unsustainable resource management to climate change. Addressing these challenges requires transdisciplinary approaches that integrate perspectives across scientific disciplines and knowledge systems. Despite widespread calls for transdisciplinary fisheries research (TFR), there are still limitations in personal and institutional capacity to conduct and support this work to the highest potential. The viewpoints of early career researchers (ECRs) in this field can illuminate challenges and promote systemic change within fisheries research. This paper presents the perspectives of ECRs from across the globe, gathered through a virtual workshop held during the 2021 World Fisheries Congress, on goals, challenges, and future potential for TFR. Big picture goals for TFR were guided by principles of co-production and included (i) integrating transdisciplinary thinking at all stages of the research process, (ii) ensuring that research is inclusive and equitable, (iii) co-creating knowledge that is credible, relevant, actionable, and impactful, and (iv) consistently communicating with partners. Institutional inertia, lack of recognition of the extra time and labour required for TFR, and lack of skill development opportunities were identified as three key barriers in conducting TFR. Several critical actions were identified to help ECRs, established researchers, and institutions reach these goals. We encourage ECRs to form peer-mentorship networks to guide each other along the way. We suggest that established researchers ensure consistent mentorship while also giving space to ECR voices. Actions for institutions include retooling education programs, developing and implementing new metrics of impact, and critically examining individualism and privilege in academia. We suggest that the opportunities and actions identified here, if widely embraced now, can enable research that addresses complex challenges facing fishery systems contributing to a healthier future for fish and humans alike.

4.
Zookeys ; (675): 45-55, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28769678

RESUMEN

A new species of damselfish, Altrichthys aleliasp. n. is described from specimens collected in shallow water (1-8m depth) off Busuanga Island, Palawan Province, Philippines. It differs from the other two species in the genus, A. curatus and A. azurelineatus, in various features including having golden upper body lacking dark edges of dorsal and caudal fins, higher modal number of tubed lateral line scales, as well as differences in two mitochondrial markers, one nuclear marker, and RAD markers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA