Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Arterioscler Thromb Vasc Biol ; 44(7): 1674-1682, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38752350

RESUMEN

BACKGROUND: A series of incurable cardiovascular disorders arise due to improper formation of elastin during development. Supravalvular aortic stenosis (SVAS), resulting from a haploinsufficiency of ELN, is caused by improper stress sensing by medial vascular smooth muscle cells, leading to progressive luminal occlusion and heart failure. SVAS remains incurable, as current therapies do not address the root issue of defective elastin. METHODS: We use SVAS here as a model of vascular proliferative disease using both human induced pluripotent stem cell-derived vascular smooth muscle cells and developmental Eln+/- mouse models to establish de novo elastin assembly as a new therapeutic intervention. RESULTS: We demonstrate mitigation of vascular proliferative abnormalities following de novo extracellular elastin assembly through the addition of the polyphenol epigallocatechin gallate to SVAS human induced pluripotent stem cell-derived vascular smooth muscle cells and in utero to Eln+/- mice. CONCLUSIONS: We demonstrate de novo elastin deposition normalizes SVAS human induced pluripotent stem cell-derived vascular smooth muscle cell hyperproliferation and rescues hypertension and aortic mechanics in Eln+/- mice, providing critical preclinical findings for the future application of epigallocatechin gallate treatment in humans.


Asunto(s)
Estenosis Aórtica Supravalvular , Catequina , Proliferación Celular , Modelos Animales de Enfermedad , Elastina , Células Madre Pluripotentes Inducidas , Músculo Liso Vascular , Miocitos del Músculo Liso , Elastina/metabolismo , Animales , Humanos , Catequina/análogos & derivados , Catequina/farmacología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Miocitos del Músculo Liso/efectos de los fármacos , Estenosis Aórtica Supravalvular/metabolismo , Estenosis Aórtica Supravalvular/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Músculo Liso Vascular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Ratones , Células Cultivadas , Ratones Endogámicos C57BL , Femenino , Masculino , Ratones Noqueados
2.
J Mol Cell Cardiol ; 174: 1-14, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36370475

RESUMEN

Familial cardiomyopathy is a precursor of heart failure and sudden cardiac death. Over the past several decades, researchers have discovered numerous gene mutations primarily in sarcomeric and cytoskeletal proteins causing two different disease phenotypes: hypertrophic (HCM) and dilated (DCM) cardiomyopathies. However, molecular mechanisms linking genotype to phenotype remain unclear. Here, we employ a systems approach by integrating experimental findings from preclinical studies (e.g., murine data) into a cohesive signaling network to scrutinize genotype to phenotype mechanisms. We developed an HCM/DCM signaling network model utilizing a logic-based differential equations approach and evaluated model performance in predicting experimental data from four contexts (HCM, DCM, pressure overload, and volume overload). The model has an overall prediction accuracy of 83.8%, with higher accuracy in the HCM context (90%) than DCM (75%). Global sensitivity analysis identifies key signaling reactions, with calcium-mediated myofilament force development and calcium-calmodulin kinase signaling ranking the highest. A structural revision analysis indicates potential missing interactions that primarily control calcium regulatory proteins, increasing model prediction accuracy. Combination pharmacotherapy analysis suggests that downregulation of signaling components such as calcium, titin and its associated proteins, growth factor receptors, ERK1/2, and PI3K-AKT could inhibit myocyte growth in HCM. In experiments with patient-specific iPSC-derived cardiomyocytes (MLP-W4R;MYH7-R723C iPSC-CMs), combined inhibition of ERK1/2 and PI3K-AKT rescued the HCM phenotype, as predicted by the model. In DCM, PI3K-AKT-NFAT downregulation combined with upregulation of Ras/ERK1/2 or titin or Gq protein could ameliorate cardiomyocyte morphology. The model results suggest that HCM mutations that increase active force through elevated calcium sensitivity could increase ERK activity and decrease eccentricity through parallel growth factors, Gq-mediated, and titin pathways. Moreover, the model simulated the influence of existing medications on cardiac growth in HCM and DCM contexts. This HCM/DCM signaling model demonstrates utility in investigating genotype to phenotype mechanisms in familial cardiomyopathy.


Asunto(s)
Cardiomiopatías , Cardiomiopatía Hipertrófica , Insuficiencia Cardíaca , Animales , Ratones , Conectina/genética , Conectina/metabolismo , Miocitos Cardíacos/metabolismo , Cardiomiopatía Hipertrófica/genética , Calcio/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Cardiomiopatías/metabolismo , Insuficiencia Cardíaca/metabolismo
3.
Circulation ; 145(16): 1238-1253, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35384713

RESUMEN

BACKGROUND: Familial hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac disease and is typically caused by mutations in genes encoding sarcomeric proteins that regulate cardiac contractility. HCM manifestations include left ventricular hypertrophy and heart failure, arrythmias, and sudden cardiac death. How dysregulated sarcomeric force production is sensed and leads to pathological remodeling remains poorly understood in HCM, thereby inhibiting the efficient development of new therapeutics. METHODS: Our discovery was based on insights from a severe phenotype of an individual with HCM and a second genetic alteration in a sarcomeric mechanosensing protein. We derived cardiomyocytes from patient-specific induced pluripotent stem cells and developed robust engineered heart tissues by seeding induced pluripotent stem cell-derived cardiomyocytes into a laser-cut scaffold possessing native cardiac fiber alignment to study human cardiac mechanobiology at both the cellular and tissue levels. Coupled with computational modeling for muscle contraction and rescue of disease phenotype by gene editing and pharmacological interventions, we have identified a new mechanotransduction pathway in HCM, shown to be essential in modulating the phenotypic expression of HCM in 5 families bearing distinct sarcomeric mutations. RESULTS: Enhanced actomyosin crossbridge formation caused by sarcomeric mutations in cardiac myosin heavy chain (MYH7) led to increased force generation, which, when coupled with slower twitch relaxation, destabilized the MLP (muscle LIM protein) stretch-sensing complex at the Z-disc. Subsequent reduction in the sarcomeric muscle LIM protein level caused disinhibition of calcineurin-nuclear factor of activated T-cells signaling, which promoted cardiac hypertrophy. We demonstrate that the common muscle LIM protein-W4R variant is an important modifier, exacerbating the phenotypic expression of HCM, but alone may not be a disease-causing mutation. By mitigating enhanced actomyosin crossbridge formation through either genetic or pharmacological means, we alleviated stress at the Z-disc, preventing the development of hypertrophy associated with sarcomeric mutations. CONCLUSIONS: Our studies have uncovered a novel biomechanical mechanism through which dysregulated sarcomeric force production is sensed and leads to pathological signaling, remodeling, and hypertrophic responses. Together, these establish the foundation for developing innovative mechanism-based treatments for HCM that stabilize the Z-disc MLP-mechanosensory complex.


Asunto(s)
Cardiomiopatía Hipertrófica Familiar , Cardiomiopatía Hipertrófica , Actomiosina/genética , Humanos , Proteínas con Dominio LIM , Mecanotransducción Celular , Proteínas Musculares , Mutación , Miocitos Cardíacos
4.
Am J Physiol Lung Cell Mol Physiol ; 324(6): L747-L755, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37014816

RESUMEN

To better define the role of mechanical forces in pulmonary emphysema, we employed methods recently developed in our laboratory to identify microscopic level relationships between airspace size and elastin-specific desmosine and isodesmosine (DID) cross links in normal and emphysematous human lungs. Free DID in wet tissue (a biomarker for elastin degradation) and total DID in formalin-fixed, paraffin-embedded (FFPE) tissue sections were measured using liquid chromatography-tandem mass spectrometry and correlated with alveolar diameter, as determined by the mean linear intercept (MLI) method. There was a positive correlation between free lung DID and MLI (P < 0.0001) in formalin-fixed lungs, and elastin breakdown was greatly accelerated when airspace diameter exceeded 400 µm. In FFPE tissue, DID density was markedly increased beyond 300 µm (P < 0.0001) and leveled off around 400 µm. Elastic fiber surface area similarly peaked at around 400 µm, but to a much lesser extent than DID density, indicating that elastin cross linking is markedly increased in response to early changes in airspace size. These findings support the hypothesis that airspace enlargement is an emergent phenomenon in which initial proliferation of DID cross links to counteract alveolar wall distention is followed by a phase transition involving rapid acceleration of elastin breakdown, alveolar wall rupture, and progression to an active disease state that is less amenable to therapeutic intervention.NEW & NOTEWORTHY The current findings support the hypothesis that airspace enlargement is an emergent phenomenon in which initial proliferation of DID cross links to counteract alveolar wall distention is followed by a phase transition involving rapid acceleration of elastin breakdown, alveolar wall rupture, and progression to an active disease state that is less amenable to therapeutic intervention.


Asunto(s)
Enfisema , Enfisema Pulmonar , Humanos , Enfisema Pulmonar/metabolismo , Elastina/metabolismo , Pulmón/metabolismo , Alveolos Pulmonares/metabolismo
5.
J Mol Cell Cardiol ; 163: 167-174, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34979103

RESUMEN

Tissue engineered vascular grafts possess several advantages over synthetic or autologous grafts, including increased availability and reduced rates of infection and thrombosis. Engineered grafts constructed from human induced pluripotent stem cell derivatives further offer enhanced reproducibility in graft production. One notable obstacle to clinical application of these grafts is the lack of elastin in the vessel wall, which would serve to endow compliance in addition to mechanical strength. This study establishes the ability of the polyphenol compound epigallocatechin gallate, a principal component of green tea, to facilitate the extracellular formation of elastin fibers in vascular smooth muscle cells derived from human induced pluripotent stem cells. Further, this study describes the creation of a doxycycline-inducible elastin expression system to uncouple elastin production from vascular smooth muscle cell proliferative capacity to permit fiber formation in conditions conducive to robust tissue engineering.


Asunto(s)
Células Madre Pluripotentes Inducidas , Ingeniería de Tejidos , Catequina/análogos & derivados , Elastina/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Reproducibilidad de los Resultados
6.
Am J Physiol Heart Circ Physiol ; 318(6): H1516-H1524, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32383992

RESUMEN

Engineered heart tissues (EHTs) have emerged as a robust in vitro model to study cardiac physiology. Although biomimetic culture environments have been developed to better approximate in vivo conditions, currently available methods do not permit full recapitulation of the four phases of the cardiac cycle. We have developed a bioreactor which allows EHTs to undergo cyclic loading sequences that mimic in vivo work loops. EHTs cultured under these working conditions exhibited enhanced concentric contractions but similar isometric contractions compared with EHTs cultured isometrically. EHTs that were allowed to shorten cyclically in culture had increased capacity for contractile work when tested acutely. Increased work production was correlated with higher levels of mitochondrial proteins and mitochondrial biogenesis; this effect was eliminated when tissues were cyclically shortened in the presence of a myosin ATPase inhibitor. Leveraging our novel in vitro method to precisely apply mechanical loads in culture, we grew EHTs under two loading regimes prescribing the same work output but with different associated afterloads. These groups showed no difference in mitochondrial protein expression. In loading regimes with the same afterload but different work output, tissues subjected to higher work demand exhibited elevated levels of mitochondrial protein. Our findings suggest that regulation of mitochondrial mass in cultured human EHTs is potently modulated by the mechanical work the tissue is permitted to perform in culture, presumably communicated through ATP demand. Precise application of mechanical loads to engineered heart tissues in culture represents a novel in vitro method for studying physiological and pathological cardiac adaptation.NEW & NOTEWORTHY In this work, we present a novel bioreactor that allows for active length control of engineered heart tissues during extended tissue culture. Specific length transients were designed so that engineered heart tissues generated complete cardiac work loops. Chronic culture with various work loops suggests that mitochondrial mass and biogenesis are directly regulated by work output.


Asunto(s)
Mitocondrias Cardíacas/metabolismo , Proteínas Mitocondriales/metabolismo , Contracción Miocárdica/fisiología , Miocardio/metabolismo , Humanos , Ingeniería de Tejidos
7.
Cell Mol Life Sci ; 76(5): 893-901, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30460472

RESUMEN

Elastin-associated vasculopathies are life-threatening conditions of blood vessel dysfunction. The extracellular matrix protein elastin endows the recoil and compliance required for physiologic arterial function, while disruption of function can lead to aberrant vascular smooth muscle cell proliferation manifesting through stenosis, aneurysm, or vessel dissection. Although research efforts have been informative, they remain incomplete as no viable therapies exist outside of a heart transplant. Induced pluripotent stem cell technology may be uniquely suited to address current obstacles as these present a replenishable supply of patient-specific material with which to study disease. The following review will cover the cutting edge in vascular smooth muscle cell modeling of elastin-associated vasculopathy, and aid in the development of human disease modeling and drug screening approaches to identify potential treatments. Vascular proliferative disease can affect up to 50% of the population throughout the world, making this a relevant and critical area of research for therapeutic development.


Asunto(s)
Elastina/fisiología , Células Madre Pluripotentes Inducidas/fisiología , Ingeniería de Tejidos/métodos , Enfermedades Vasculares/etiología , Fenómenos Biomecánicos , Núcleo Celular/fisiología , Proliferación Celular , Evaluación Preclínica de Medicamentos , Humanos , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/fisiología , Transducción de Señal
10.
Arterioscler Thromb Vasc Biol ; 37(9): 1657-1666, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28751568

RESUMEN

OBJECTIVE: Elastin deficiency because of heterozygous loss of an ELN allele in Williams syndrome causes obstructive aortopathy characterized by medial thickening and fibrosis and consequent aortic stiffening. Previous work in Eln-null mice with a severe arterial phenotype showed that inhibition of mTOR (mechanistic target of rapamycin), a key regulator of cell growth, lessened the aortic obstruction but did not prevent early postnatal death. We investigated the effects of mTOR inhibition in Eln-null mice partially rescued by human ELN that manifest a less severe arterial phenotype and survive long term. APPROACH AND RESULTS: Thoracic aortas of neonatal and juvenile mice with graded elastin deficiency exhibited increased signaling through both mTOR complex 1 and 2. Despite lower predicted wall stress, there was increased phosphorylation of focal adhesion kinase, suggestive of greater integrin activation, and increased transforming growth factor-ß-signaling mediators, associated with increased collagen expression. Pharmacological blockade of mTOR by rapalogs did not improve luminal stenosis but reduced mechanosignaling (in delayed fashion after mTOR complex 1 inhibition), medial collagen accumulation, and stiffening of the aorta. Rapalog administration also retarded somatic growth, however, and precipitated neonatal deaths. Complementary, less-toxic strategies to inhibit mTOR via altered growth factor and nutrient responses were not effective. CONCLUSIONS: In addition to previously demonstrated therapeutic benefits of rapalogs decreasing smooth muscle cell proliferation in the absence of elastin, we find that rapalogs also prevent aortic fibrosis and stiffening attributable to partial elastin deficiency. Our findings suggest that mTOR-sensitive perturbation of smooth muscle cell mechanosensing contributes to elastin aortopathy.


Asunto(s)
Enfermedades de la Aorta/tratamiento farmacológico , Colágeno/metabolismo , Elastina/deficiencia , Mecanotransducción Celular/efectos de los fármacos , Músculo Liso Vascular/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Rigidez Vascular/efectos de los fármacos , Síndrome de Williams/tratamiento farmacológico , Animales , Aorta Torácica/efectos de los fármacos , Aorta Torácica/enzimología , Aorta Torácica/patología , Aorta Torácica/fisiopatología , Enfermedades de la Aorta/enzimología , Enfermedades de la Aorta/patología , Enfermedades de la Aorta/fisiopatología , Proliferación Celular/efectos de los fármacos , Elastina/genética , Everolimus/farmacología , Quinasa 1 de Adhesión Focal/metabolismo , Predisposición Genética a la Enfermedad , Humanos , Mesilato de Imatinib/farmacología , Diana Mecanicista del Complejo 1 de la Rapamicina , Diana Mecanicista del Complejo 2 de la Rapamicina , Ratones Endogámicos C57BL , Ratones Noqueados , Complejos Multiproteicos/metabolismo , Músculo Liso Vascular/enzimología , Músculo Liso Vascular/patología , Músculo Liso Vascular/fisiopatología , Fenotipo , Fosforilación , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Factores de Tiempo , Síndrome de Williams/enzimología , Síndrome de Williams/patología , Síndrome de Williams/fisiopatología
11.
Arterioscler Thromb Vasc Biol ; 37(4): 657-663, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28232325

RESUMEN

OBJECTIVE: Increasing evidence suggests that bone morphogenetic protein (BMP) signaling regulates angiogenesis. Here, we aimed to define the function of BMP receptors in regulating early postnatal angiogenesis by analysis of inducible, endothelial-specific deletion of the BMP receptor components Bmpr2 (BMP type 2 receptor), Alk1 (activin receptor-like kinase 1), Alk2, and Alk3 in mouse retinal vessels. APPROACH AND RESULTS: Expression analysis of several BMP ligands showed that proangiogenic BMP ligands are highly expressed in postnatal retinas. Consistently, BMP receptors are also strongly expressed in retina with a distinct pattern. To assess the function of BMP signaling in retinal angiogenesis, we first generated mice carrying an endothelial-specific inducible deletion of Bmpr2. Postnatal deletion of Bmpr2 in endothelial cells substantially decreased the number of angiogenic sprouts at the vascular front and branch points behind the front, leading to attenuated radial expansion. To identify critical BMPR1s (BMP type 1 receptors) associated with BMPR2 in retinal angiogenesis, we generated endothelial-specific inducible deletion of 3 BMPR1s abundantly expressed in endothelial cells and analyzed the respective phenotypes. Among these, endothelial-specific deletion of either Alk2/acvr1 or Alk3/Bmpr1a caused a delay in radial expansion, reminiscent of vascular defects associated with postnatal endothelial-specific deletion of BMPR2, suggesting that ALK2/ACVR1 and ALK3/BMPR1A are likely to be the critical BMPR1s necessary for proangiogenic BMP signaling in retinal vessels. CONCLUSIONS: Our data identify BMP signaling mediated by coordination of ALK2/ACVR1, ALK3/BMPR1A, and BMPR2 as an essential proangiogenic cue for retinal vessels.


Asunto(s)
Receptores de Activinas Tipo I/metabolismo , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Células Endoteliales/efectos de los fármacos , Arteria Retiniana/efectos de los fármacos , Neovascularización Retiniana , Receptores de Activinas Tipo I/deficiencia , Receptores de Activinas Tipo I/genética , Receptores de Activinas Tipo II , Animales , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/deficiencia , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/deficiencia , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Células Endoteliales/metabolismo , Regulación del Desarrollo de la Expresión Génica , Genotipo , Ligandos , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Arteria Retiniana/metabolismo , Transducción de Señal
12.
Circ Res ; 117(2): 121-8, 2015 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-25940550

RESUMEN

RATIONALE: The participation of endothelial cells (EC) in many physiological and pathological processes is widely modeled using human EC cultures, but genetic manipulation of these untransformed cells has been technically challenging. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 nuclease (Cas9) technology offers a promising new approach. However, mutagenized cultured cells require cloning to yield homogeneous populations, and the limited replicative lifespan of well-differentiated human EC presents a barrier for doing so. OBJECTIVE: To create a simple but highly efficient method using CRISPR/Cas9 to generate biallelic gene disruption in untransformed human EC. METHODS AND RESULTS: To demonstrate proof-of-principle, we used CRISPR/Cas9 to disrupt the gene for the class II transactivator. We used endothelial colony forming cell-derived EC and lentiviral vectors to deliver CRISPR/Cas9 elements to ablate EC expression of class II major histocompatibility complex molecules and with it, the capacity to activate allogeneic CD4(+) T cells. We show the observed loss-of-function arises from biallelic gene disruption in class II transactivator that leaves other essential properties of the cells intact, including self-assembly into blood vessels in vivo, and that the altered phenotype can be rescued by reintroduction of class II transactivator expression. CONCLUSIONS: CRISPR/Cas9-modified human EC provides a powerful platform for vascular research and for regenerative medicine/tissue engineering.


Asunto(s)
Sistemas CRISPR-Cas , Células Progenitoras Endoteliales/citología , Sangre Fetal/citología , Eliminación de Gen , Técnicas de Inactivación de Genes , Vectores Genéticos/farmacología , Lentivirus/genética , Proteínas Nucleares/genética , Transactivadores/genética , Animales , Linfocitos T CD4-Positivos/inmunología , Sistemas CRISPR-Cas/genética , Separación Celular/métodos , Células Cultivadas , Células Progenitoras Endoteliales/metabolismo , Células Progenitoras Endoteliales/trasplante , Femenino , Genes MHC Clase II , Vectores Genéticos/efectos de los fármacos , Antígenos HLA-DR/biosíntesis , Antígenos HLA-DR/inmunología , Humanos , Péptidos y Proteínas de Señalización Intracelular , Activación de Linfocitos , Prueba de Cultivo Mixto de Linfocitos , Ratones , Ratones SCID , Cultivo Primario de Células/métodos , Proteínas/genética , Tetraciclina/farmacología , Proteínas de Transporte Vesicular
13.
Curr Cardiol Rep ; 19(4): 34, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28324469

RESUMEN

PURPOSE OF REVIEW: The purpose of this review is to provide a broad overview of current trends in stem cell research and its applications in cardiovascular medicine. Researches on different stem cell sources, their inherent characteristics, and the limitations they have in medical applications are discussed. Additionally, uses of stem cells for both modeling and treating cardiovascular disease are discussed, taking note of the obstacles these engineered interventions must overcome to be clinically viable. RECENT FINDINGS: Tissue engineering aims to replace dysfunctional tissues with engineered constructs. Stem cell technologies have been a great enabling factor in working toward this goal. Many tissue-engineered products are in development that utilize stem cell technology. Although promising, some refinement must be made to these constructs with respect to safety and functionality. A deeper understanding of basic differentiation and tissue developmental mechanisms is required to allow these engineered tissues to be translated into the clinic.


Asunto(s)
Enfermedades Cardiovasculares/terapia , Regeneración , Células Madre , Ingeniería de Tejidos , Diferenciación Celular , Humanos
15.
Circ Res ; 114(1): 56-66, 2014 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-24122719

RESUMEN

RATIONALE: The emergence of lymphatic endothelial cells (LECs) seems to be highly regulated during development. Although several factors that promote the differentiation of LECs in embryonic development have been identified, those that negatively regulate this process are largely unknown. OBJECTIVE: Our aim was to delineate the role of bone morphogenetic protein (BMP) 2 signaling in lymphatic development. METHODS AND RESULTS: BMP2 signaling negatively regulates the formation of LECs. Developing LECs lack any detectable BMP signaling activity in both zebrafish and mouse embryos, and excess BMP2 signaling in zebrafish embryos and mouse embryonic stem cell-derived embryoid bodies substantially decrease the emergence of LECs. Mechanistically, BMP2 signaling induces expression of miR-31 and miR-181a in a SMAD-dependent mechanism, which in turn results in attenuated expression of prospero homeobox protein 1 during development. CONCLUSIONS: Our data identify BMP2 as a key negative regulator for the emergence of the lymphatic lineage during vertebrate development.


Asunto(s)
Proteína Morfogenética Ósea 2/metabolismo , Endotelio Linfático/embriología , Endotelio Linfático/metabolismo , Transducción de Señal , Proteínas de Pez Cebra/metabolismo , Animales , Proteína Morfogenética Ósea 2/genética , Diferenciación Celular , Línea Celular , Cuerpos Embrioides/citología , Cuerpos Embrioides/metabolismo , Células Endoteliales/citología , Células Endoteliales/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Vasos Linfáticos/embriología , Vasos Linfáticos/metabolismo , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Smad/metabolismo , Transcripción Genética , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Pez Cebra , Proteínas de Pez Cebra/genética
16.
Biochem J ; 465(2): 185-94, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25559088

RESUMEN

Vascular smooth muscle cells (VSMCs) play a major role in the pathophysiology of cardiovascular diseases. The advent of induced pluripotent stem cell (iPSC) technology and the capability of differentiating into virtually every cell type in the human body make this field a ray of hope for vascular regenerative therapy and understanding of the disease mechanism. In the present review, we first discuss the recent iPSC technology and vascular smooth muscle development from an embryo and then examine different methodologies to derive VSMCs from iPSCs, and their applications in regenerative therapy and disease modelling.


Asunto(s)
Diferenciación Celular , Células Madre Pluripotentes Inducidas/metabolismo , Músculo Liso Vascular/metabolismo , Medicina Regenerativa/métodos , Enfermedades Vasculares/terapia , Animales , Embrión de Mamíferos/metabolismo , Humanos , Enfermedades Vasculares/metabolismo
17.
Arterioscler Thromb Vasc Biol ; 33(5): 1028-35, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23493289

RESUMEN

OBJECTIVE: Patients with elastin deficiency attributable to gene mutation (supravalvular aortic stenosis) or chromosomal microdeletion (Williams syndrome) are characterized by obstructive arteriopathy resulting from excessive smooth muscle cell (SMC) proliferation, mural expansion, and inadequate vessel size. We investigated whether rapamycin, an inhibitor of the cell growth regulator mammalian target of rapamycin (mTOR) and effective against other SMC proliferative disorders, is of therapeutic benefit in experimental models of elastin deficiency. APPROACH AND RESULTS: As previously reported, Eln(-/-) mice demonstrated SMC hyperplasia and severe stenosis of the aorta, whereas Eln(+/-) mice exhibited a smaller diameter aorta with more numerous but thinner elastic lamellae. Increased mTOR signaling was detected in elastin-deficient aortas of newborn pups that was inhibited by maternal administration of rapamycin. mTOR inhibition reduced SMC proliferation and aortic obstruction in Eln(-/-) pups and prevented medial hyperlamellation in Eln(+/-) weanlings without compromising aortic size. However, rapamycin did not prolong the survival of Eln(-/-) pups, and it retarded the somatic growth of juvenile Eln(+/-) and Eln(+/+) mice. In cell cultures, rapamycin inhibited prolonged mTOR activation and enhanced proliferation of SMC derived from patients with supravalvular aortic stenosis and with Williams syndrome. CONCLUSIONS: mTOR inhibition may represent a pharmacological strategy to treat diffuse arteriopathy resulting from elastin deficiency.


Asunto(s)
Arteriopatías Oclusivas/etiología , Elastina/deficiencia , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Adulto , Animales , Estenosis Aórtica Supravalvular/complicaciones , Arteriopatías Oclusivas/prevención & control , Proliferación Celular/efectos de los fármacos , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/fisiología , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/fisiología , Síndrome de Williams/complicaciones
18.
Res Sq ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38883790

RESUMEN

The cytoplasmic RIG-I-like receptors (RLRs) recognize viral RNA and initiate innate antiviral immunity. RLR signaling also triggers glycolytic reprogramming through glucose transporters (GLUTs), whose role in antiviral immunity is elusive. Here, we unveil that insulin-responsive GLUT4 inhibits RLR signaling independently of glucose uptake in adipose and muscle tissues. At steady state, GLUT4 is docked at the Golgi matrix by ubiquitin regulatory X domain 9 (UBXN9, TUG). Following RNA virus infection, GLUT4 is released and translocated to the cell surface where it spatially segregates a significant pool of cytosolic RLRs, preventing them from activating IFN-ß responses. UBXN9 deletion prompts constitutive GLUT4 trafficking, sequestration of RLRs, and attenuation of antiviral immunity, whereas GLUT4 deletion heightens RLR signaling. Notably, reduced GLUT4 expression is uniquely associated with human inflammatory myopathies characterized by hyperactive interferon responses. Overall, our results demonstrate a noncanonical UBXN9-GLUT4 axis that controls antiviral immunity via plasma membrane tethering of cytosolic RLRs.

19.
Circulation ; 126(14): 1695-704, 2012 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-22914687

RESUMEN

BACKGROUND: Supravalvular aortic stenosis (SVAS) is caused by mutations in the elastin (ELN) gene and is characterized by abnormal proliferation of vascular smooth muscle cells (SMCs) that can lead to narrowing or blockage of the ascending aorta and other arterial vessels. Having patient-specific SMCs available may facilitate the study of disease mechanisms and development of novel therapeutic interventions. METHODS AND RESULTS: Here, we report the development of a human induced pluripotent stem cell (iPSC) line from a patient with SVAS caused by the premature termination in exon 10 of the ELN gene resulting from an exon 9 four-nucleotide insertion. We showed that SVAS iPSC-derived SMCs (iPSC-SMCs) had significantly fewer organized networks of smooth muscle α-actin filament bundles, a hallmark of mature contractile SMCs, compared with control iPSC-SMCs. The addition of elastin recombinant protein or enhancement of small GTPase RhoA signaling was able to rescue the formation of smooth muscle α-actin filament bundles in SVAS iPSC-SMCs. Cell counts and BrdU analysis revealed a significantly higher proliferation rate in SVAS iPSC-SMCs than control iPSC-SMCs. Furthermore, SVAS iPSC-SMCs migrated at a markedly higher rate to the chemotactic agent platelet-derived growth factor compared with the control iPSC-SMCs. We also provided evidence that elevated activity of extracellular signal-regulated kinase 1/2 is required for hyperproliferation of SVAS iPSC-SMCs. The phenotype was confirmed in iPSC-SMCs generated from a patient with deletion of elastin owing to Williams-Beuren syndrome. CONCLUSIONS: SVAS iPSC-SMCs recapitulate key pathological features of patients with SVAS and may provide a promising strategy to study disease mechanisms and to develop novel therapies.


Asunto(s)
Estenosis Aórtica Supravalvular/patología , Células Madre Pluripotentes Inducidas/patología , Síndrome de Williams/patología , Adulto , Animales , Células Cultivadas , Niño , Humanos , Masculino , Ratones
20.
Cell Mol Life Sci ; 69(16): 2635-56, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22388688

RESUMEN

Heart disease is one of the leading causes of death worldwide and the number of patients with the disease is likely to grow with the continual decline in health for most of the developed world. Heart transplantation is one of the only treatment options for heart failure due to an acute myocardial infarction, but limited donor supply and organ rejection limit its widespread use. Cellular cardiomyoplasty, or cellular implantation, combined with various tissue-engineering methods aims to regenerate functional heart tissue. This review highlights the numerous cell sources that have been used to regenerate the heart as well as cover the wide range of tissue-engineering strategies that have been devised to optimize the delivery of these cells. It will probably be a long time before an effective regenerative therapy can make a serious impact at the bedside.


Asunto(s)
Lesiones Cardíacas/terapia , Corazón/fisiología , Miocardio/citología , Regeneración , Ingeniería de Tejidos , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA