Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Org Biomol Chem ; 20(34): 6707-6720, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35942854

RESUMEN

Fluorinated organic compounds are common among pharmaceuticals, agrochemicals and materials. The significant strength of the C-F bond results in chemical inertness that, depending on the context, is beneficial, problematic or simply a formidable synthetic challenge. Electrosynthesis is a rapidly expanding methodology that can enable new reactivity and selectivity for cleavage and formation of chemical bonds. Here, a comprehensive overview of synthetically relevant electrochemically driven protocols for C-F bond activation and functionalization is presented, including photoelectrochemical strategies.


Asunto(s)
Compuestos Orgánicos
2.
Acc Chem Res ; 53(1): 45-61, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31850730

RESUMEN

The importance of sustainable and green synthetic protocols for the synthesis of fine chemicals has rapidly increased during the last decades in an effort to reduce the use of fossil fuels and other finite resources. The replacement of common reagents by electricity provides a cost- and atom-efficient, environmentally friendly, and inherently safe access to novel synthetic routes. The selective formation of carbon-carbon bonds between two distinct substrates is a crucial tool in organic chemistry. This fundamental transformation enables access to a broad variety of complex molecular architectures. In particular, the aryl-aryl bond formation has high significance for the preparation of organic materials, drugs, and natural products. Besides well-known and well-established reductive- and oxidative-reagent-mediated or transition-metal-catalyzed coupling reactions, novel synthetic protocols have arisen, which require fewer steps than conventional synthetic approaches. Electroorganic conversions can be categorized according to the nature of the electron transfer processes occurring. Direct transformations at inert electrode materials are environmentally benign and cost-effective, whereas catalytic processes at active electrodes and mediated electrosynthesis using an additional soluble reagent can have beneficial properties in terms of selectivity and reactivity. In general, these conversions require challenging optimization of the reaction parameters and the appropriate cell design. Galvanostatic reactions enable fast conversions with a rather simple setup, whereas potentiostatic electrolysis may enhance selectivity. This Account discusses the development of seminal carbon-carbon bond formations over the past two decades, focusing on phenols leading to precursors for ligands in, e.g., hydroformylation reaction. A key element in the success of these electrochemical transformations is the application of electrochemically inert, non-nucleophilic, highly fluorinated alcohols such as 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP), which exhibit a large potential window for transformations and enable selective cross-coupling reactions. This selectivity is based on the capability of HFIP to stabilize organic radicals. Inert, carbon-based and metal-free electrode materials like graphite or boron-doped diamond (BDD) open up novel electroorganic pathways. Furthermore, novel active electrode materials have been developed to enable intra- and intermolecular dehydrogenative coupling reactions of electron-rich aryls. The application of 2,2'-biphenol derivatives as ligand components for catalysts requires reactions to be carried out on larger scale. In order to achieve this, continuous flow transformations have been established to overcome the drawbacks of heat transfer, overconversion, and conductivity. Modular cell designs enable the transfer of a broad variety of electroorganic conversions into continuous processes. Recent results demonstrate the application of organic electrochemistry to natural product synthesis of the pharmaceutically relevant opiate alkaloids (-)-thebaine or (-)-oxycodone.


Asunto(s)
Técnicas Electroquímicas , Hidrocarburos Aromáticos/síntesis química , Hidrocarburos Aromáticos/química , Hidrogenación , Conformación Molecular
3.
Chemistry ; 26(45): 10195-10198, 2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32232873

RESUMEN

A novel approach towards the activation of different arenes and purines including caffeine and theophylline is presented. The simple, safe and scalable electrochemical synthesis of 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) aryl ethers was conducted using an easy electrolysis setup with boron-doped diamond (BDD) electrodes. Good yields up to 59 % were achieved. Triethylamine was used as a base as it forms a highly conductive media with HFIP, making additional supporting electrolytes superfluous. The synthesis was optimized using Design of Experiment (DoE) techniques giving a detailed insight to the significance of the reaction parameters. The mechanism was investigated by cyclic voltammetry (CV). Subsequent transition metal-catalyzed as well as metal-free functionalization led to interesting motifs in excellent yields up to 94 %.

4.
Angew Chem Int Ed Engl ; 59(1): 315-319, 2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31498544

RESUMEN

We herein present a metal-free, electrosynthetic method that enables the direct dehydrogenative coupling reactions of phenols carrying electron-withdrawing groups for the first time. The reactions are easy to conduct and scalable, as they are carried out in undivided cells and obviate the necessity for additional supporting electrolyte. As such, this conversion is efficient, practical, and thereby environmentally friendly, as production of waste is minimized. The method features a broad substrate scope, and a variety of functional groups are tolerated, providing easy access to precursors for novel polydentate ligands and even heterocycles such as dibenzofurans.

5.
Angew Chem Int Ed Engl ; 57(37): 12136-12140, 2018 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-29797649

RESUMEN

A selective dehydrogenative electrochemical functionalization of benzylic positions that employs 1,1,1,3,3,3-hexafluoropropan-2-ol (HFIP) has been developed. The electrogenerated products are versatile intermediates for subsequent functionalizations as they act as masked benzylic cations that can be easily activated. Herein, we report a sustainable, scalable, and reagent- and metal-free dehydrogenative formal benzyl-aryl cross-coupling. Liberation of the benzylic cation was accomplished through the use of acid. Valuable diarylmethanes are accessible in the presence of aromatic nucleophiles. The direct application of electricity enables a safe and environmentally benign chemical transformation as oxidizers are replaced by electrons. A broad variety of different substrates and nucleophiles can be employed.

6.
ChemistryOpen ; 8(9): 1153, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31497468

RESUMEN

Invited for this month's cover picture is the group of Professor Siegfried Waldvogel. The cover picture displays the robustness achieved by the installation of fluorinated alcohols on 1,3-benzodioxoles, protecting the obtained orthoesters against acids and bases, like the shield of a knight. The simple protocol allows access to interesting compounds, whose lipophilicity is tremendously increased by the incorporation of fluorinated groups. This makes it possible to adjust the physicochemical properties of the biologically active 1,3-benzodioxole motif. The surprisingly high stability against acids and bases gives rise to subsequent functionalizations or direct application in medicinal or agrochemistry. Read the full text of their Communication at 10.1002/open.201900127.

7.
ChemistryOpen ; 8(9): 1167-1171, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31497470

RESUMEN

A scalable, dehydrogenative, and electrochemical synthesis of novel highly fluorinated orthoesters is reported. This protocol provides easy and direct access to a wide variety of derivatives, using a very simple electrolysis setup. These compounds are surprisingly robust towards base and acid with an unusual high lipophilicity, making them interesting motifs for potentially active compounds in medicinal chemistry or agro applications. The use of electricity enables a safe and environmentally benign chemical transformation as only electrons serve as oxidants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA