Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Virol ; 90(12): 5601-5610, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27030267

RESUMEN

UNLABELLED: The coxsackievirus and adenovirus receptor (CAR) is a member of the immunoglobulin superfamily (IgSF) and functions as a receptor for coxsackie B viruses (CVBs). The extracellular portion of CAR comprises two glycosylated immunoglobulin-like domains, D1 and D2. CAR-D1 binds to the virus and is essential for virus infection; however, it is not known whether D2 is also important for infection, and the role of glycosylation has not been explored. To understand the function of these structural components in CAR-mediated CVB3 infection, we generated a panel of human (h) CAR deletion and substitution mutants and analyzed their functionality as CVB receptors, examining both virus binding and replication. Lack of glycosylation of the CAR-D1 or -D2 domains did not adversely affect CVB3 binding or infection, indicating that the glycosylation of CAR is not required for its receptor functions. Deletion of the D2 domain reduced CVB3 binding, with a proportionate reduction in the efficiency of virus infection. Replacement of D2 with the homologous D2 domain from chicken CAR, or with the heterologous type C2 immunoglobulin-like domain from IgSF11, another IgSF member, fully restored receptor function; however, replacement of CAR-D2 with domains from CD155 or CD80 restored function only in part. These data indicate that glycosylation of the extracellular domain of hCAR plays no role in CVB3 receptor function and that CAR-D2 is not specifically required. The D2 domain may function largely as a spacer permitting virus access to D1; however, the data may also suggest that D2 affects virus binding by influencing the conformation of D1. IMPORTANCE: An important step in virus infection is the initial interaction of the virus with its cellular receptor. Although the role in infection of the extracellular CAR-D1, cytoplasmic, and transmembrane domains have been analyzed extensively, nothing is known about the function of CAR-D2 and the extracellular glycosylation of CAR. Our data indicate that glycosylation of the extracellular CAR domain has only minor importance for the function of CAR as CVB3 receptor and that the D2 domain is not essential per se but contributes to receptor function by promoting the exposure of the D1 domain on the cell surface. These results contribute to our understanding of the coxsackievirus-receptor interactions.


Asunto(s)
Proteína de la Membrana Similar al Receptor de Coxsackie y Adenovirus/química , Proteína de la Membrana Similar al Receptor de Coxsackie y Adenovirus/metabolismo , Enterovirus Humano B/fisiología , Acoplamiento Viral , Animales , Células CHO , Pollos , Proteína de la Membrana Similar al Receptor de Coxsackie y Adenovirus/genética , Cricetulus , Enterovirus Humano B/química , Glicosilación , Células HeLa , Humanos , Dominios de Inmunoglobulinas/genética , Mutación , Replicación Viral
2.
Invest Ophthalmol Vis Sci ; 59(1): 561-571, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29372254

RESUMEN

Purpose: Mutations in the gene encoding Gasdermin A3 (Gsdma3) have been described to cause severe skin phenotypes, including loss of sebaceous glands and alopecia, in mice. We discovered a novel C-terminal mutation in Gsdma3 in a new mouse line and characterized a less frequently reported corneal phenotype, likely caused by degeneration of Meibomian glands of the inner eyelid. Methods: We used histologic methods to evaluate the effects of the C+/H- mutation on sebaceous gland and skin morphology as well as Meibomian glands of the inner eyelid and corneal tissue. Chromosomal aberrations were excluded by karyogram analyses. The mutation was identified by Sanger sequencing of candidate genes. Results: Analyses of skin samples from affected mice confirmed the frequently reported phenotypes associated with mutations in Gsdma3: Degeneration of sebaceous glands and complete loss of pelage. Immunologic staining of corneal samples suggested an inflammatory response with signs of neovascularization in half of the affected older mice. While the corneal phenotype was observed at irregular time points, mainly after 6 months, its appearance coincided with a degeneration of Meibomian glands in the eyelids of affected animals. Conclusions: The mutation described herein is associated with inflammation and neovascularization of corneal tissue. Simultaneous degeneration of Meibomian glands in affected animals suggested a change in tear-film composition as the underlying cause for the corneal phenotype. Our data further support that different pathogenic mechanisms underlie some of the reported mutations in Gsdma3.


Asunto(s)
Alopecia/genética , Neovascularización de la Córnea/genética , Queratitis/genética , Mutación , Proteínas/genética , Alopecia/diagnóstico , Animales , Neovascularización de la Córnea/diagnóstico , Enfermedades de los Párpados/patología , Amplificación de Genes , Hibridación Fluorescente in Situ , Queratitis/diagnóstico , Glándulas Tarsales/patología , Ratones , Ratones Endogámicos C57BL , Linaje , Glándulas Sebáceas/patología , Análisis de Secuencia de ADN , Piel/patología
3.
Physiol Rep ; 5(24)2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29263115

RESUMEN

Adiponectin (APN) is a multifunctional adipocytokine that inhibits myocardial fibrosis, dilatation, and left ventricular (LV) dysfunction after myocardial infarction (MI). Coxsackievirus B3 (CVB3) myocarditis is associated with intense extracellular matrix (ECM) remodeling which might progress to dilated cardiomyopathy. Here, we investigated in experimental CVB3 myocarditis whether APN inhibits adverse ECM remodeling following cardiac injury by affecting matrix metalloproteinase (MMP) expression. Cardiac injury was induced by CVB3 infection in APN knockout (APN-KO) and wild-type (WT) mice. Expression and activity of MMPs was quantified by qRT-PCR and zymography, respectively. Activation of protein kinases was assessed by immunoblot. In cardiac myocytes and fibroblasts APN up-regulates MMP-9 expression via activation of 5' adenosine monophosphate-activated protein kinase (AMPK) and extracellular signal-regulated kinase (ERK)1/2 which function as master regulators of inflammation-induced MMP-9 expression. Correspondingly, APN further increased up-regulation of MMP-9 expression triggered by tumor necrosis factor (TNF)α, lipopolysaccharide (LPS) and R-848 in cardiac fibroblasts. In vivo, compared to WT mice cardiac MMP-9 activity and serum levels of carboxy-terminal telopeptide of type I collagen (ICTP) were attenuated in APN-KO mice in subacute (day 7 p.i.) CVB3 myocarditis. Moreover, on day 3 and day 7 post CVB3 infection splenic MMP-9 expression was diminished in APN-KO mice correlating with attenuated myocardial immune cell infiltration in subacute CVB3 myocarditis. These results indicate that APN attenuates adverse cardiac remodeling following cardiac injury by up-regulating MMP-9 expression in cardiac and immune cells. Thus, APN mediates intensified collagen cleavage that might explain inhibition of LV fibrosis and dysfunction.


Asunto(s)
Adiponectina/metabolismo , Matriz Extracelular/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Miocarditis/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales , Células Cultivadas , Colágeno Tipo I/metabolismo , Matriz Extracelular/patología , Femenino , Fibrosis , Masculino , Metaloproteinasa 9 de la Matriz/genética , Ratones , Ratones Endogámicos C57BL , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Miocarditis/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Proteínas Quinasas/metabolismo , Regulación hacia Arriba
4.
Antivir Ther ; 21(7): 559-566, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27032991

RESUMEN

Adenovirus (Ad) infections are usually mild and self-limiting, but severe systemic infections and fatal diseases can occur, especially in immunosuppressed patients. Anti-adenoviral pharmacotherapy has been proven to inhibit Ad infection, but its efficiency is limited. This review addresses biological antiviral agents as a new class of therapeutics for treatment of Ad infections. One group of agents is composed of short double-stranded RNA molecules that have been developed to inhibit Ad receptor and Ad protein expression. The second group of agents includes soluble virus receptor traps which inhibit Ad uptake into cells. Anti-Ad-adoptive T-cell therapy constitutes a third approach. We also outline how the combination of biological antiviral agents and combinations of these agents with the classical antiviral drugs can increase therapeutic efficiency in anti-adenoviral treatments.


Asunto(s)
Infecciones por Adenoviridae/terapia , Antivirales/uso terapéutico , Productos Biológicos/uso terapéutico , Animales , Proteína de la Membrana Similar al Receptor de Coxsackie y Adenovirus/fisiología , Humanos , Inmunoterapia Adoptiva , ARN Bicatenario/uso terapéutico
5.
Invest Ophthalmol Vis Sci ; 57(13): 5326-5334, 2016 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-27784063

RESUMEN

PURPOSE: Gene therapies to treat eye disorders have been extensively studied in the past 20 years. Frequently, adeno-associated viruses were applied to the subretinal or intravitreal space of the eye to transduce retinal cells with nucleotide sequences of therapeutic potential. In this study we describe a novel intravitreal injection procedure that leads to a reproducible adeno-associated virus (AAV)2/8-mediated transduction of more than 70% of the retina. METHODS: Prior to a single intravitreal injection of a enhanced green fluorescent protien (GFP)-expressing viral suspension, we performed an aspiration of vitreous tissue from wild-type C57Bl/6J mice. One and one-half microliters of AAV2/8 suspension was injected. Funduscopy, optical coherence tomography (OCT), laser scanning microscopy of retinal flat mounts, cryosections of eye cups, and ERG recordings verified the efficacy and safety of the method. RESULTS: The combination of vitreous aspiration and intravitreal injection resulted in an almost complete transduction of the retina in approximately 60% of the eyes and showed transduced cells in all retinal layers. Photoreceptors and RPE cells were predominantly transduced. Eyes presented with well-preserved retinal morphology. Electroretinographic recordings suggested that the new combination of techniques did not cause significant alterations of the retinal physiology. CONCLUSIONS: We show a novel application technique of AAV2/8 to the vitreous of mice that leads to widespread transduction of the retina. The results of this study have implications for virus-based gene therapies and basic science; for example, they might provide an approach to apply gene replacement strategies or clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 in vivo. It may further help to develop similar techniques for larger animal models or humans.


Asunto(s)
Dependovirus/genética , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Enfermedades de la Retina/terapia , Succión/métodos , Transducción Genética/métodos , Animales , Dependovirus/patogenicidad , Modelos Animales de Enfermedad , Electrorretinografía , Inyecciones Intravítreas , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Epitelio Pigmentado Ocular , Retina/patología , Retina/fisiopatología , Enfermedades de la Retina/diagnóstico , Tomografía de Coherencia Óptica , Transgenes , Cuerpo Vítreo
6.
Sci Rep ; 6: 36208, 2016 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-27812022

RESUMEN

The diagnoses of retinitis pigmentosa (RP) and stationary night blindness (CSNB) are two distinct clinical entities belonging to a group of clinically and genetically heterogeneous retinal diseases. The current study focused on the identification of causative mutations in the RP-affected index patient and in several members of the same family that reported a phenotype resembling CSNB. Ophthalmological examinations of the index patient confirmed a typical form of RP. In contrast, clinical characterizations and ERGs of another affected family member showed the Riggs-type CSNB lacking signs of RP. Applying whole exome sequencing we detected the non-synonymous substitution c.337G > A, p.E113 K in the rhodopsin (RHO) gene. The mutation co-segregated with the diseases. The identification of the pathogenic variant p.E113 K is the first description of a naturally-occurring mutation in the Schiff base counterion of RHO in human patients. The heterozygous mutation c.337G > A in exon 1 was confirmed in the index patient as well as in five CSNB-affected relatives. This pathogenic sequence change was excluded in a healthy family member and in 199 ethnically matched controls. Our findings suggest that a mutation in the biochemically well-characterized counterion p.E113 in RHO can be associated with RP or Riggs-type CSNB, even within the same family.


Asunto(s)
Mutación Missense , Ceguera Nocturna/genética , Retinitis Pigmentosa/genética , Rodopsina/genética , Adulto , Anciano de 80 o más Años , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Estudios de Casos y Controles , Análisis Mutacional de ADN , Femenino , Heterocigoto , Humanos , Masculino , Persona de Mediana Edad , Ceguera Nocturna/diagnóstico por imagen , Linaje , Fenotipo , Retinitis Pigmentosa/diagnóstico por imagen , Rodopsina/química , Bases de Schiff , Análisis de Secuencia de ADN
7.
Antiviral Res ; 120: 72-8, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26026665

RESUMEN

Adenoviruses (Ad) generally induce mild self-limiting respiratory or intestinal infections but can also cause serious disease with fatal outcomes in immunosuppressed patients. Antiviral drug therapy is an important treatment for adenoviral infections but its efficiency is limited. Recently, we have shown that gene silencing by RNA interference (RNAi) is a promising new approach to inhibit adenoviral infection. In the present in vitro study, we examined whether the efficiency of an RNAi-based anti-adenoviral therapy can be further increased by combination with a virus receptor trap sCAR-Fc and with the antiviral drug cidofovir. Initially, three siRNAs, siE1A_4, siIVa2_2 and Pol-si2, targeting the adenoviral E1A, IVa2 and DNA polymerase mRNAs, respectively, were used for gene silencing. Replication of the Ad was inhibited in a dose dependent manner by each siRNA, but the efficiency of inhibition differed (Pol-si2>siIVa2_2>siE1A_4). Double or triple combinations of the siRNAs compared with single siRNAs did not result in a measurably higher suppression of Ad replication. Combination of the siRNAs (alone or mixes of two or three siRNAs) with sCAR-Fc markedly increased the suppression of adenoviral replication compared to the same siRNA treatment without sCAR-Fc. Moreover, the triple combination of a mix of all three siRNAs, sCAR-Fc and cidofovir was about 23-fold more efficient than the combination of siRNAs mix/sCAR-Fc and about 95-fold more efficient than the siRNA mix alone. These data demonstrate that co-treatment of cells with sCAR-Fc and cidofovir is suitable to increase the efficiency of anti-adenoviral siRNAs.


Asunto(s)
Adenoviridae/efectos de los fármacos , Antivirales/metabolismo , Citosina/análogos & derivados , Organofosfonatos/metabolismo , ARN Interferente Pequeño/metabolismo , Receptores Virales/metabolismo , Internalización del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Adenoviridae/fisiología , Cidofovir , Citosina/metabolismo , ADN Viral/análisis , Sinergismo Farmacológico , Células HeLa , Humanos
8.
PLoS One ; 9(3): e92188, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24670775

RESUMEN

In failing rat hearts, post-transcriptonal inhibition of phospholamban (PLB) expression by AAV9 vector-mediated cardiac delivery of short hairpin RNAs directed against PLB (shPLBr) improves both impaired SERCA2a controlled Ca2+ cycling and contractile dysfunction. Cardiac delivery of shPLB, however, was reported to cause cardiac toxicity in canines. Thus we developed a new AAV vector, scAAV6-amiR155-PLBr, expressing a novel engineered artificial microRNA (amiR155-PLBr) directed against PLB under control of a heart-specific hybrid promoter. Its PLB silencing efficiency and safety were compared with those of an AAV vector expressing shPLBr (scAAV6-shPLBr) from an ubiquitously active U6 promoter. Investigations were carried out in cultured neonatal rat cardiomyocytes (CM) over a period of 14 days. Compared to shPLBr, amiR155-PLBr was expressed at a significantly lower level, resulting in delayed and less pronounced PLB silencing. Despite decreased knockdown efficiency of scAAV6-amiR155-PLBr, a similar increase of the SERCA2a-catalyzed Ca2+ uptake into sarcoplasmic reticulum (SR) vesicles was observed for both the shPLBr and amiR155-PLBr vectors. Proteomic analysis confirmed PLB silencing of both therapeutic vectors and revealed that shPLBr, but not the amiR155-PLBr vector, increased the proinflammatory proteins STAT3, STAT1 and activated STAT1 phosphorylation at the key amino acid residue Tyr701. Quantitative RT-PCR analysis detected alterations in the expression of several cardiac microRNAs after treatment of CM with scAAV6-shPLBr and scAAV6-amiR155-PLBr, as well as after treatment with its related amiR155- and shRNAs-expressing control AAV vectors. The results demonstrate that scAAV6-amiR155-PLBr is capable of enhancing the Ca2+ transport function of the cardiac SR PLB/SERCA2a system as efficiently as scAAV6-shPLBr while offering a superior safety profile.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Calcio/metabolismo , Dependovirus/metabolismo , Silenciador del Gen , Vectores Genéticos/metabolismo , MicroARNs/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Western Blotting , ADN Complementario/genética , Genes Reporteros , Células HEK293 , Humanos , Inflamación/patología , Miocardio/metabolismo , Proteómica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Wistar , Reproducibilidad de los Resultados , Retículo Sarcoplasmático , Transducción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA