Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34272275

RESUMEN

Cellular respiration is powered by membrane-bound redox enzymes that convert chemical energy into an electrochemical proton gradient and drive the energy metabolism. By combining large-scale classical and quantum mechanical simulations with cryo-electron microscopy data, we resolve here molecular details of conformational changes linked to proton pumping in the mammalian complex I. Our data suggest that complex I deactivation blocks water-mediated proton transfer between a membrane-bound quinone site and proton-pumping modules, decoupling the energy-transduction machinery. We identify a putative gating region at the interface between membrane domain subunits ND1 and ND3/ND4L/ND6 that modulates the proton transfer by conformational changes in transmembrane helices and bulky residues. The region is perturbed by mutations linked to human mitochondrial disorders and is suggested to also undergo conformational changes during catalysis of simpler complex I variants that lack the "active"-to-"deactive" transition. Our findings suggest that conformational changes in transmembrane helices modulate the proton transfer dynamics by wetting/dewetting transitions and provide important functional insight into the mammalian respiratory complex I.


Asunto(s)
Complejo I de Transporte de Electrón/química , Complejo I de Transporte de Electrón/metabolismo , Protones , Animales , Sitios de Unión , Transporte Biológico , Respiración de la Célula , Microscopía por Crioelectrón , Complejo I de Transporte de Electrón/genética , Metabolismo Energético , Humanos , Enfermedades Mitocondriales/genética , Membranas Mitocondriales/química , Membranas Mitocondriales/metabolismo , Simulación de Dinámica Molecular , Mutación , Oxidación-Reducción , Conformación Proteica , Dominios Proteicos , Estructura Secundaria de Proteína , Quinonas/química , Quinonas/metabolismo , Agua/química , Agua/metabolismo
2.
J Biol Chem ; 294(35): 13186-13197, 2019 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-31331936

RESUMEN

The prototypical kinase c-Src plays an important role in numerous signal transduction pathways, where its activity is tightly regulated by two phosphorylation events. Phosphorylation at a specific tyrosine by C-terminal Src kinase inactivates c-Src, whereas autophosphorylation is essential for the c-Src activation process. However, the structural consequences of the autophosphorylation process still remain elusive. Here we investigate how the structural landscape of c-Src is shaped by nucleotide binding and phosphorylation of Tyr416 using biochemical experiments, hydrogen/deuterium exchange MS, and atomistic molecular simulations. We show that the initial steps of kinase activation involve large rearrangements in domain orientation. The kinase domain is highly dynamic and has strong cross-talk with the regulatory domains, which are displaced by autophosphorylation. Although the regulatory domains become more flexible and detach from the kinase domain because of autophosphorylation, the kinase domain gains rigidity, leading to stabilization of the ATP binding site and a 4-fold increase in enzymatic activity. Our combined results provide a molecular framework of the central steps in c-Src kinase regulation process with possible implications for understanding general kinase activation mechanisms.


Asunto(s)
Proteínas Proto-Oncogénicas pp60(c-src)/metabolismo , Medición de Intercambio de Deuterio , Humanos , Espectrometría de Masas , Simulación de Dinámica Molecular , Fosforilación , Agregado de Proteínas , Conformación Proteica , Proteínas Proto-Oncogénicas pp60(c-src)/química
3.
J Am Chem Soc ; 142(52): 21758-21766, 2020 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-33325238

RESUMEN

The respiratory complex I is a gigantic (1 MDa) redox-driven proton pump that reduces the ubiquinone pool and generates proton motive force to power ATP synthesis in mitochondria. Despite resolved molecular structures and biochemical characterization of the enzyme from multiple organisms, its long-range (∼300 Å) proton-coupled electron transfer (PCET) mechanism remains unsolved. We employ here microsecond molecular dynamics simulations to probe the dynamics of the mammalian complex I in combination with hybrid quantum/classical (QM/MM) free energy calculations to explore how proton pumping reactions are triggered within its 200 Å wide membrane domain. Our simulations predict extensive hydration dynamics of the antiporter-like subunits in complex I that enable lateral proton transfer reactions on a microsecond time scale. We further show how the coupling between conserved ion pairs and charged residues modulate the proton transfer dynamics, and how transmembrane helices and gating residues control the hydration process. Our findings suggest that the mammalian complex I pumps protons by tightly linked conformational and electrostatic coupling principles.


Asunto(s)
Biocatálisis , Complejo I de Transporte de Electrón/metabolismo , Simulación de Dinámica Molecular , Agua/metabolismo , Transporte de Electrón , Complejo I de Transporte de Electrón/química , Teoría Cuántica , Electricidad Estática , Termodinámica
4.
J Am Chem Soc ; 139(33): 11349-11352, 2017 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-28763218

RESUMEN

Carvone is a sustainable and readily available starting material for organic synthesis. Herein, we present the syntheses of various natural product scaffolds that rely on a novel benzannulation involving the α-methyl group (C-10) of carvone to afford a versatile tetralin. The utility of our synthetic approach is highlighted by its application to a short synthesis of the ent-3,4-seco-atisane diterpenoid (-)-crotogoudin. The 13-step enantiospecific synthesis features a regioselective double oxidative dearomatization, a Diels-Alder cycloaddition with ethylene gas (to construct the bicyclo[2.2.2]octane framework), and a final acid-mediated lactonization. The versatility of this benzannulation strategy is demonstrated by its utility in the preparation of the carbon skeleton of ent-3,4-seco-abietane diterpenoids using an intramolecular oxidative dearomatization.


Asunto(s)
Productos Biológicos/síntesis química , Diterpenos/síntesis química , Productos Biológicos/química , Reacción de Cicloadición/métodos , Monoterpenos Ciclohexánicos , Diterpenos/química , Etilenos/síntesis química , Etilenos/química , Monoterpenos/síntesis química , Monoterpenos/química , Oxidación-Reducción , Estereoisomerismo , Tetrahidronaftalenos/síntesis química , Tetrahidronaftalenos/química
5.
Nat Commun ; 12(1): 1895, 2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33767131

RESUMEN

Soluble proteins are universally packed with a hydrophobic core and a polar surface that drive the protein folding process. Yet charged networks within the central protein core are often indispensable for the biological function. Here, we show that natural buried ion-pairs are stabilised by amphiphilic residues that electrostatically shield the charged motif from its surroundings to gain structural stability. To explore this effect, we build artificial proteins with buried ion-pairs by combining directed computational design and biophysical experiments. Our findings illustrate how perturbation in charged networks can introduce structural rearrangements to compensate for desolvation effects. We validate the physical principles by resolving high-resolution atomic structures of the artificial proteins that are resistant towards unfolding at extreme temperatures and harsh chemical conditions. Our findings provide a molecular understanding of functional charged networks and how point mutations may alter the protein's conformational landscape.


Asunto(s)
Conformación Proteica , Pliegue de Proteína , Proteínas/metabolismo , Secuencia de Aminoácidos , Biología Computacional , Simulación por Computador , Interacciones Hidrofóbicas e Hidrofílicas , Simulación de Dinámica Molecular , Termodinámica
6.
Methods Mol Biol ; 2022: 75-104, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31396900

RESUMEN

Quantum chemical (QC) calculations provide a basis for deriving a microscopic understanding of enzymes and photobiological systems. Here we describe how QC models can be used to explore the electronic structure, dynamics, and energetics of biomolecules. We introduce the hybrid quantum mechanics/classical mechanics (QM/MM) approach, where a quantum mechanically described system of interest is embedded in a classically described force field representation of the biochemical surroundings. We also discuss the QM cluster model approach, as well as embedding theories, that provide complementary methodologies to model quantum mechanical effects in biomolecules. The chapter also provides some practical guides for building quantum biochemical models using the quinone reduction catalysis in respiratory complex I and a model reaction in solution as examples.


Asunto(s)
Benzoquinonas/química , Complejo I de Transporte de Electrón/química , Modelos Químicos , Catálisis , Teoría Funcional de la Densidad , Modelos Moleculares , Simulación de Dinámica Molecular , Teoría Cuántica , Electricidad Estática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA