Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
EMBO J ; 40(20): e107159, 2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34523144

RESUMEN

Permeabilization of the outer mitochondrial membrane by pore-forming Bcl2 proteins is a crucial step for the induction of apoptosis. Despite a large set of data suggesting global conformational changes within pro-apoptotic Bak during pore formation, high-resolution structural details in a membrane environment remain sparse. Here, we used NMR and HDX-MS (Hydrogen deuterium exchange mass spectrometry) in lipid nanodiscs to gain important high-resolution structural insights into the conformational changes of Bak at the membrane that are dependent on a direct activation by BH3-only proteins. Furthermore, we determined the first high-resolution structure of the Bak transmembrane helix. Upon activation, α-helix 1 in the soluble domain of Bak dissociates from the protein and adopts an unfolded and dynamic potentially membrane-bound state. In line with this finding, comparative protein folding experiments with Bak and anti-apoptotic BclxL suggest that α-helix 1 in Bak is a metastable structural element contributing to its pro-apoptotic features. Consequently, mutagenesis experiments aimed at stabilizing α-helix 1 yielded Bak variants with delayed pore-forming activity. These insights will contribute to a better mechanistic understanding of Bak-mediated membrane permeabilization.


Asunto(s)
Liposomas/química , Lípidos de la Membrana/química , Proteínas Proto-Oncogénicas c-bcl-2/química , Proteína Destructora del Antagonista Homólogo bcl-2/química , Proteína bcl-X/química , Sitios de Unión , Clonación Molecular , Medición de Intercambio de Deuterio , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Cinética , Liposomas/metabolismo , Lípidos de la Membrana/metabolismo , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinámica , Proteína Destructora del Antagonista Homólogo bcl-2/genética , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
2.
J Biol Chem ; 299(1): 102753, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36442512

RESUMEN

Small Heat shock proteins (sHsps) are a family of molecular chaperones that bind nonnative proteins in an ATP-independent manner. Caenorhabditis elegans encodes 16 different sHsps, among them Hsp17, which is evolutionarily distinct from other sHsps in the nematode. The structure and mechanism of Hsp17 and how these may differ from other sHsps remain unclear. Here, we find that Hsp17 has a distinct expression pattern, structural organization, and chaperone function. Consistent with its presence under nonstress conditions, and in contrast to many other sHsps, we determined that Hsp17 is a mono-disperse, permanently active chaperone in vitro, which interacts with hundreds of different C. elegans proteins under physiological conditions. Additionally, our cryo-EM structure of Hsp17 reveals that in the 24-mer complex, 12 N-terminal regions are involved in its chaperone function. These flexible regions are located on the outside of the spherical oligomer, whereas the other 12 N-terminal regions are engaged in stabilizing interactions in its interior. This allows the same region in Hsp17 to perform different functions depending on the topological context. Taken together, our results reveal structural and functional features that further define the structural basis of permanently active sHsps.


Asunto(s)
Proteínas de Choque Térmico Pequeñas , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Choque Térmico Pequeñas/genética , Proteínas de Choque Térmico Pequeñas/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo
3.
J Biol Chem ; 296: 100334, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33508322

RESUMEN

Systemic light chain (AL) amyloidosis is a fatal protein misfolding disease in which excessive secretion, misfolding, and subsequent aggregation of free antibody light chains eventually lead to deposition of amyloid plaques in various organs. Patient-specific mutations in the antibody VL domain are closely linked to the disease, but the molecular mechanisms by which certain mutations induce misfolding and amyloid aggregation of antibody domains are still poorly understood. Here, we compare a patient VL domain with its nonamyloidogenic germline counterpart and show that, out of the five mutations present, two of them strongly destabilize the protein and induce amyloid fibril formation. Surprisingly, the decisive, disease-causing mutations are located in the highly variable complementarity determining regions (CDRs) but exhibit a strong impact on the dynamics of conserved core regions of the patient VL domain. This effect seems to be based on a deviation from the canonical CDR structures of CDR2 and CDR3 induced by the substitutions. The amyloid-driving mutations are not necessarily involved in propagating fibril formation by providing specific side chain interactions within the fibril structure. Rather, they destabilize the VL domain in a specific way, increasing the dynamics of framework regions, which can then change their conformation to form the fibril core. These findings reveal unexpected influences of CDR-framework interactions on antibody architecture, stability, and amyloid propensity.


Asunto(s)
Amiloide/ultraestructura , Regiones Determinantes de Complementariedad/genética , Amiloidosis de Cadenas Ligeras de las Inmunoglobulinas/genética , Placa Amiloide/genética , Secuencia de Aminoácidos/genética , Amiloide/genética , Amiloide/inmunología , Proteínas Amiloidogénicas/genética , Proteínas Amiloidogénicas/inmunología , Proteínas Amiloidogénicas/ultraestructura , Regiones Determinantes de Complementariedad/química , Regiones Determinantes de Complementariedad/ultraestructura , Humanos , Amiloidosis de Cadenas Ligeras de las Inmunoglobulinas/inmunología , Amiloidosis de Cadenas Ligeras de las Inmunoglobulinas/metabolismo , Mutación/genética , Placa Amiloide/inmunología , Placa Amiloide/patología , Agregación Patológica de Proteínas/genética , Agregación Patológica de Proteínas/inmunología , Agregación Patológica de Proteínas/patología , Conformación Proteica , Pliegue de Proteína
4.
Commun Biol ; 6(1): 386, 2023 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-37031320

RESUMEN

The angiotensin-converting enzyme 2 (ACE2) is a viral receptor used by sarbecoviruses to infect cells. Fusion proteins comprising extracellular ACE2 domains and the Fc part of immunoglobulins exhibit high virus neutralization efficiency, but the structure and stability of these molecules are poorly understood. We show that although the hinge between the ACE2 and the IgG4-Fc is highly flexible, the conformational dynamics of the two ACE2 domains is restricted by their association. Interestingly, the conformational stability of the ACE2 moiety is much lower than that of the Fc part. We found that chemical compounds binding to ACE2, such as DX600 and MLN4760, can be used to strongly increase the thermal stability of the ACE2 by different mechanisms. Together, our findings reveal a general concept for stabilizing the labile receptor segments of therapeutic antiviral fusion proteins by chemical compounds.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Antivirales/química , Enzima Convertidora de Angiotensina 2/metabolismo , Unión Proteica
5.
J Mol Biol ; 435(23): 168300, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37805067

RESUMEN

Interleukin 12 (IL-12) family cytokines connect the innate and adaptive branches of the immune system and regulate immune responses. A unique characteristic of this family is that each member is anα:ßheterodimer. For human αsubunits it has been shown that they depend on theirßsubunit for structure formation and secretion from cells. Since subunits are shared within the family and IL-12 as well as IL-23 use the same ßsubunit, subunit competition may influence cytokine secretion and thus downstream immunological functions. Here, we rationally design a folding-competent human IL-23α subunit that does not depend on itsßsubunit for structure formation. This engineered variant still forms a functional heterodimeric cytokine but shows less chaperone dependency and stronger affinity in assembly with its ßsubunit. It forms IL-23 more efficiently than its natural counterpart, skewing the balance of IL-12 and IL-23 towards more IL-23 formation. Together, our study shows that folding-competent human IL-12 familyαsubunits are obtainable by only few mutations and compatible with assembly and function of the cytokine. These findings might suggest that human α subunits have evolved for assembly-dependent folding to maintain and regulate correct IL-12 family member ratios in the light of subunit competition.


Asunto(s)
Interleucina-12 , Interleucina-23 , Multimerización de Proteína , Humanos , Interleucina-12/química , Interleucina-12/genética , Interleucina-12/metabolismo , Interleucina-23/química , Interleucina-23/genética , Interleucina-23/metabolismo , Chaperonas Moleculares , Pliegue de Proteína , Mutación , Conformación Proteica , Ingeniería de Proteínas , Simulación por Computador
6.
Sci Adv ; 9(43): eadg6874, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37878703

RESUMEN

Interleukins are secreted proteins that regulate immune responses. Among these, the interleukin 12 (IL-12) family holds a central position in inflammatory and infectious diseases. Each family member consists of an α and a ß subunit that together form a composite cytokine. Within the IL-12 family, IL-35 remains particularly ill-characterized on a molecular level despite its key role in autoimmune diseases and cancer. Here we show that both IL-35 subunits, IL-12α and EBI3, mutually promote their secretion from cells but are not necessarily secreted as a heterodimer. Our data demonstrate that IL-12α and EBI3 are stable proteins in isolation that act as anti-inflammatory molecules. Both reduce secretion of proinflammatory cytokines and induce the development of regulatory T cells. Together, our study reveals IL-12α and EBI3, the subunits of IL-35, to be functionally active anti-inflammatory immune molecules on their own. This extends our understanding of the human cytokine repertoire as a basis for immunotherapeutic approaches.


Asunto(s)
Interleucina-12 , Interleucinas , Humanos , Citocinas/metabolismo , Interleucina-12/metabolismo , Interleucinas/metabolismo , Antígenos de Histocompatibilidad Menor/metabolismo , Linfocitos T Reguladores
7.
Sci Rep ; 11(1): 12515, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34131228

RESUMEN

The glucocorticoid receptor is a key regulator of essential physiological processes, which under the control of the Hsp90 chaperone machinery, binds to steroid hormones and steroid-like molecules and in a rather complicated and elusive response, regulates a set of glucocorticoid responsive genes. We here examine a human glucocorticoid receptor variant, harboring a point mutation in the last C-terminal residues, L773P, that was associated to Primary Generalized Glucocorticoid Resistance, a condition originating from decreased affinity to hormone, impairing one or multiple aspects of GR action. Using in vitro and in silico methods, we assign the conformational consequences of this mutation to particular GR elements and report on the altered receptor properties regarding its binding to dexamethasone, a NCOA-2 coactivator-derived peptide, DNA, and importantly, its interaction with the chaperone machinery of Hsp90.


Asunto(s)
Glucocorticoides/genética , Proteínas HSP90 de Choque Térmico/genética , Conformación Molecular/efectos de los fármacos , Receptores de Glucocorticoides/genética , Animales , ADN/genética , Dexametasona/farmacología , Glucocorticoides/química , Proteínas HSP90 de Choque Térmico/ultraestructura , Humanos , Errores Innatos del Metabolismo/genética , Errores Innatos del Metabolismo/patología , Chaperonas Moleculares/genética , Chaperonas Moleculares/ultraestructura , Coactivador 2 del Receptor Nuclear/química , Coactivador 2 del Receptor Nuclear/genética , Péptidos/genética , Mutación Puntual/genética , Unión Proteica/genética , Receptores de Glucocorticoides/deficiencia , Receptores de Glucocorticoides/ultraestructura
8.
J Mol Biol ; 432(23): 6187-6199, 2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-33058870

RESUMEN

In antibody light chain amyloidosis (AL), mutant light chains (LCs) or their variable domains (VLs) form fibrils, which accumulate in organs and lead to their failure. The molecular mechanism of this disease is still poorly understood. One of the key open issues is whether the mutant VLs and LCs differ in fibril formation. We addressed this question studying the effects of the VL mutations S20N and R61A within the isolated VL domain and in the full-length LC scaffold. Both VL variants readily form fibrils. Here, we find that in the LC context, the S20N variant is protected from fibril formation while for LC R61A fibril formation is even accelerated compared to VL R61A. Our analyses revealed that the partially unfolded state of the VL R61A domain destabilizes the CL domain by non-native interactions, in turn leading to a further unfolding of the VL domain. In contrast, the folded mutant VL S20N and VL wt form native interactions with CL. These are beneficial for LC stability and promote amyloid resistance. Thus the effects of specific mutations on the VL fold can have opposing effects on LC domain interactions, stability and amyloidogenicity.


Asunto(s)
Amiloide/genética , Proteínas Amiloidogénicas/genética , Cadenas Ligeras de Inmunoglobulina/inmunología , Agregación Patológica de Proteínas/genética , Secuencia de Aminoácidos/genética , Amiloide/inmunología , Proteínas Amiloidogénicas/inmunología , Amiloidosis/genética , Amiloidosis/inmunología , Humanos , Cadenas Ligeras de Inmunoglobulina/genética , Modelos Moleculares , Proteínas Mutantes/genética , Proteínas Mutantes/inmunología , Agregación Patológica de Proteínas/inmunología , Conformación Proteica
9.
Nat Commun ; 10(1): 4121, 2019 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-31511508

RESUMEN

The functionality of most secreted proteins depends on their assembly into a defined quaternary structure. Despite this, it remains unclear how cells discriminate unassembled proteins en route to the native state from misfolded ones that need to be degraded. Here we show how chaperones can regulate and control assembly of heterodimeric proteins, using interleukin 23 (IL-23) as a model. We find that the IL-23 α-subunit remains partially unstructured until assembly with its ß-subunit occurs and identify a major site of incomplete folding. Incomplete folding is recognized by different chaperones along the secretory pathway, realizing reliable assembly control by sequential checkpoints. Structural optimization of the chaperone recognition site allows it to bypass quality control checkpoints and provides a secretion-competent IL-23α subunit, which can still form functional heterodimeric IL-23. Thus, locally-restricted incomplete folding within single-domain proteins can be used to regulate and control their assembly.


Asunto(s)
Interleucina-23/metabolismo , Chaperonas Moleculares/metabolismo , Animales , Células COS , Chlorocebus aethiops , Cisteína/metabolismo , Retículo Endoplásmico/metabolismo , Semivida , Humanos , Interleucina-23/química , Modelos Biológicos , Pliegue de Proteína , Estabilidad Proteica , Estructura Secundaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA