Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Proc Natl Acad Sci U S A ; 109(10): 3897-902, 2012 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-22355103

RESUMEN

Dendritic cells (DCs) are pivotal for the development of experimental autoimmune encephalomyelitis (EAE). However, the mechanisms by which they control disease remain to be determined. This study demonstrates that expression of CC chemokine receptor 4 (CCR4) by DCs is required for EAE induction. CCR4(-/-) mice presented enhanced resistance to EAE associated with a reduction in IL-23 and GM-CSF expression in the CNS. Restoring CCR4 on myeloid cells in bone marrow chimeras or intracerebral microinjection of CCR4-competent DCs, but not macrophages, restored EAE in CCR4(-/-) mice, indicating that CCR4(+) DCs are cellular mediators of EAE development. Mechanistically, CCR4(-/-) DCs were less efficient in GM-CSF and IL-23 production and also T(H)-17 maintenance. Intraspinal IL-23 reconstitution restored EAE in CCR4(-/-) mice, whereas intracerebral inoculation using IL-23(-/-) DCs or GM-CSF(-/-) DCs failed to induce disease. Thus, CCR4-dependent GM-CSF production in DCs required for IL-23 release in these cells is a major component in the development of EAE. Our study identified a unique role for CCR4 in regulating DC function in EAE, harboring therapeutic potential for the treatment of CNS autoimmunity by targeting CCR4 on this specific cell type.


Asunto(s)
Células Dendríticas/citología , Encefalomielitis Autoinmune Experimental/inmunología , Regulación de la Expresión Génica , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Interleucina-23/metabolismo , Receptores CCR4/fisiología , Animales , Células de la Médula Ósea/citología , Encefalomielitis Autoinmune Experimental/metabolismo , Inflamación , Ligandos , Macrófagos/citología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Biológicos , Receptores CCR4/metabolismo
2.
Cells Tissues Organs ; 193(3): 158-69, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-20962500

RESUMEN

The vocal fold epithelium is critical to upper airway immunologic defense and water/ion transport; therefore, any form of physical trauma or insult increases the vulnerability of this structure to functional impairment and pathogen invasion/infection. In this study, we examined the reestablishment of epithelial and basement membrane barrier structures in a well-established rat model of vocal fold mucosal injury. We observed active cell recruitment culminating in peak hyperplasia at 3 days postinjury, the establishment of robust E-cadherin+ and transglutaminase-1+ biochemical barrier signals along the epithelial surface by 3 days postinjury, and the persistent absence of a type IV collagen+ basement membrane at 7 days postinjury. The distinct spatial and temporal immunoactivity of these molecules is consistent with a programmed repair process driving the restoration of vocal fold mucosal integrity and permeability. These data may inform future efforts to optimize functional mucosal recovery postinjury and avoid undesirable events such as barrier compromise or epithelial metaplasia.


Asunto(s)
Membrana Basal/metabolismo , Cadherinas/metabolismo , Colágeno Tipo IV/metabolismo , Mucosa Laríngea/lesiones , Mucosa Laríngea/metabolismo , Transglutaminasas/metabolismo , Pliegues Vocales/lesiones , Pliegues Vocales/metabolismo , Animales , Membrana Basal/lesiones , Inmunohistoquímica , Masculino , Microscopía Fluorescente , Ratas , Ratas Sprague-Dawley
3.
Wound Repair Regen ; 18(1): 89-97, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20002898

RESUMEN

The vocal fold mucosa plays an important role in voice production. Its cellular composition and density frequently change under various pathological conditions, often contributing to altered extracellular matrix production, tissue viscoelasticity, and voice quality. In this study, cellular changes in the rat mucosa following a unilateral stripping injury were investigated and analyzed semi-quantitatively. Distinctive and sequential changes in cellular morphology, composition, and density were observed in the mucosa post-injury. Cellular recruitment was a major event during the early stage of injury and reached its peak level by day 5 post-injury. Several types of cells, including neutrophil-like cells, epithelial cells, and fibroblast-like cells, were sequentially recruited. The sequential emergence of reactive cell populations following injury and subsequent reconstruction of the mucosa suggests their involvement in vocal fold tissue repair and scar formation processes.


Asunto(s)
Mucosa Laríngea/patología , Pliegues Vocales/lesiones , Pliegues Vocales/patología , Animales , Masculino , Ratas , Ratas Sprague-Dawley
4.
J Pain Res ; 10: 1111-1123, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28546769

RESUMEN

Back pain is the second leading cause of disability among American adults and is currently treated either with conservative therapy or interventional pain procedures. However, the question that remains is whether we, as physicians, have adequate therapeutic options to offer to the patients who suffer from chronic low back pain but fail both conservative therapy and interventional pain procedures before they consider surgical options such as discectomy, disc arthroplasty, or spinal fusion. The purpose of this article is to review the potential novel therapies that are on the horizon for the treatment of chronic low back pain. We discuss medications that are currently in use through different phases of clinical trials (I-III) for the treatment of low back pain. In this review, we discuss revisiting the concept of chemonucleolysis using chymopapain, as the first drug in an intradiscal injection to reduce herniated disc size, and newer intradiscal therapies, including collagenase, chondroitinase, matrix metalloproteinases, and ethanol gel. We also review an intravenous glial cell-derived neurotrophic growth factor called artemin, which may repair sensory nerves compressed by herniated discs. Another new drug in development for low back pain without radiculopathy is a subcutaneous monoclonal antibody acting as nerve growth factor called tanezumab. Finally, we discuss how platelet-rich plasma and stem cells are being studied for the treatment of low back pain. We believe that with these new therapeutic options, we can bridge the current gap between conservative/interventional procedures and surgeries in patients with chronic back pain.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA