Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Phys Chem Chem Phys ; 25(40): 26958-26971, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37585177

RESUMEN

Inspired by photosystem II (PS II), Mn oxide based electrocatalysts have been repeatedly investigated as catalysts for the electrochemical oxygen evolution reaction (OER), the anodic reaction in water electrolysis. However, a comparison of the conditions in biological OER catalysed by the water splitting complex CaMn4Ox with the requirements for an electrocatalyst for industrially relevant applications reveals fundamental differences. Thus, a systematic development of artificial Mn-based OER catalysts requires both a fundamental understanding of the catalytic mechanisms as well as an evaluation of the practicality of the system for industrial scale applications. Experimentally, both aspects can be approached using in situ and operando methods including spectroscopy. This paper highlights some of the major challenges common to different operando investigation methods and recent insights gained with them. To this end, vibrational spectroscopy, especially Raman spectroscopy, absorption techniques in the bandgap region and operando X-ray spectroelectrochemistry (SEC), both in the hard and soft X-ray regime are particularly focused on here. Technical challenges specific to each method are discussed first, followed by challenges that are specific to Mn oxide based systems. Finally, recent in situ and operando studies are reviewed. This analysis shows that despite the technical and Mn specific challenges, three specific key features are common to most of the studied systems with significant OER activity: structural disorder, Mn oxidation states between III and IV, and the appearance of layered birnessite phases in the active regime.

2.
Phys Chem Chem Phys ; 24(8): 4809-4819, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35147613

RESUMEN

The in situ control of reversible protein adsorption to a surface is a critical step towards biofouling prevention and finds utilisation in bioanalytical applications. In this work, adsorption of peptides is controlled by employing the electrode potential induced, reversible change of germanium (100) surface termination between a hydrophobic, hydrogen terminated and a hydrophilic, hydroxyl terminated surface. This simple but effective 'smart' interface is used to direct adsorption of two peptides models, representing the naturally highly abundant structural motifs of amphipathic helices and coiled-coils. Their structural similarity coincides with their opposite overall charge and hence allows the examination of the influence of charge and hydrophobicity on adsorption. Polarized attenuated total reflection infrared (ATR-IR) spectroscopy at controlled electrode potential has been used to follow the adsorption process at physiological pH in deuterated buffer. The delicate balance of hydrophobic and electrostatic peptide/surface interactions leads to two different processes upon switching that are both observed in situ: reversible adsorption and reversible reorientation. Negatively charged peptide adsorption can be fully controlled by switching to the hydrophobic interface, while the same switch causes the positively charged, helical peptide to tilt down. This principle can be used for 'smart' adsorption control of a wider variety of proteins and peptides and hence find application, as e.g. a bioanalytical tool or functional biosensor.


Asunto(s)
Germanio , Adsorción , Germanio/química , Interacciones Hidrofóbicas e Hidrofílicas , Péptidos/química , Espectrofotometría Infrarroja , Propiedades de Superficie
3.
Eur Biophys J ; 49(7): 533-547, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32915248

RESUMEN

Tween (polysorbate) 20 and 80 are surfactants used for the development of parenteral protein drugs, due to their beneficial safety profile and stabilisation properties. To elucidate the mechanism by which Tween 20 and 80 stabilise proteins in aqueous solutions, either by a "direct" protein to surfactant interaction and/or by an interaction with the protein film at the air-water interface, we used spectroscopic (Infrared Reflection Absorption Spectroscopy, IRRAS) and microscopic techniques (Brewster Angle Microscopy, BAM) in combination with surface pressure measurements. To this end, the impact of both types of Tweens with regard to the displacement of the protein from the air-water interface was studied. As a model protein, human serum albumin (HSA) was used. The results for the displacement of the adsorbed HSA films by Tweens 20 and 80 can partially be understood on the basis of an orogenic displacement mechanism, which depends on the critical surface pressure of the adsorbed protein film. With increasing concentration of Tween in the sub-phase, BAM images showed the formation of different domain morphologies. IRRA-spectra supported the finding that at high protein concentration in the sub-phase, the protein film could not be completely displaced by the surfactants. Comparing the impact of both surfactants, we found that Tween 20 adsorbed faster to the protein film than Tween 80. The adsorption kinetics of both Tweens and the speed of protein displacement increased with rising surfactant concentration. Tween 80 reached significant lower surface pressures than Tween 20, which led to an incomplete displacement of the observed HSA film.


Asunto(s)
Aire , Albúminas/química , Polisorbatos/química , Agua/química , Adsorción , Biofisica , Humanos , Iones , Ensayo de Materiales , Proteínas/química , Albúmina Sérica Humana/química , Espectrofotometría Infrarroja , Propiedades de Superficie , Tensoactivos/química
4.
Langmuir ; 35(16): 5501-5508, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30908063

RESUMEN

Liposomal membrane fusion is an important tool to study complex biological fusion mechanisms. We use lipidated derivatives of the specific heterodimeric coiled coil pair E: (EIAALEK)3 and K: (KIAALKE)3 to study and control the fusion of liposomes. In this model system, peptides are tethered to their liposomes via a poly(ethylene glycol) (PEG) spacer and a lipid anchor. The efficiency of the fusion mechanism and function of the peptides is highly affected by the PEG-spacer length and the lipid anchor type. Here, the influence of membrane-fusogen distance on the peptide-membrane interactions and the peptide secondary structures is studied with Langmuir film balance and infrared reflection absorption spectroscopy. We found that the introduction of a spacer to monolayer-tethered peptide E changes its conformation from solvated random coils to homo-oligomers. In contrast, the described peptide-monolayer interaction of peptide K is not affected by the PEG-spacer length. Furthermore, the coexistence of different conformations when both lipopeptides E and K are present at the membrane surface is demonstrated empirically, which has many implications for the design of effective fusogenic recognition units and the field of artificial membrane fusion.


Asunto(s)
Péptidos/química , Fusión de Membrana , Tamaño de la Partícula , Polietilenglicoles/química , Estructura Secundaria de Proteína , Propiedades de Superficie
5.
Phys Chem Chem Phys ; 21(20): 10457-10469, 2019 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-31070222

RESUMEN

Manganese-based systems are considered as candidate electrocatalysts for the electrochemical oxygen evolution reaction (OER), because of their abundance in biochemical oxygen producing catalyst systems. In this work, the surface of metallic manganese was investigated in situ and operando in potentiodynamic cyclic voltammetry (CV) experiments and potentiostatic chronoamperometry (CA) experiments in NaOH. In both cases, the surfaces were initially reduced. At corresponding potentials, no oxide species can be detected by Raman spectroscopy, though electrochemical data and the absence of dissolution above the reversible potential for reactions of type Mn → MnII indicate that the material is passive. The CV shows anodic peaks at potentials in line with expectations on the basis of thermodynamic data for the oxidation to Mn3O4 and Mn2O3; the thickness of the surface layer increases by a few nm during these peaks, as evidenced by spectroscopic ellipsometry. Dissolution of Mn as evidenced by downstream electrolyte analysis by inductively coupled plasma mass spectrometry in a scanning flow cell (SFC-ICP-MS) of the electrolyte is negligible in the range of electrode potential vs. Ag|AgCl|3 M KCl, EAg|AgCl, up to 0.3 V. Remarkably, Raman spectra already show the occurrence of α-MnO2 at EAg|AgCl > -0.25 V, which is ca. 0.5 V below the potential at which oxidation to MnO2 is expected. This observation is attributed to disproportionation above a certain level of MnIII. For EAg|AgCl > 0.4 V, dissolution sets in, at a constant layer thickness. Above the onset potential of the OER, at EAg|AgCl≈ 0.6 V, SFC-ICP-MS analysis shows fast dissolution, and the oxide layer thickness is constant or increases. CA experiments during the OER show strong dissolution, and the re-formation of a strongly disordered, ß-MnO2-like oxide, which exists in a quasi-stationary state at the interface. Several CV cycles increase the dissolution per cycle and the fraction of α-MnO2 on the surface which cannot be reduced. The high dissolution currents show that metallic Mn is hardly suitable as an OER catalyst, however, at least the MnIV oxides remain stationarily present in the system.

6.
J Chem Phys ; 148(22): 222824, 2018 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-29907053

RESUMEN

The charge-dependent structure of interfacial water at the n-Ge(100)-aqueous perchlorate interface was studied by controlling the electrode potential. Specifically, a joint attenuated total reflection infrared spectroscopy and electrochemical experiment was used in 0.1M NaClO4 at pH ≈ 1-10. The germanium surface transformation to an H-terminated surface followed the thermodynamic Nernstian pH dependence and was observed throughout the entire pH range. A singular value decomposition-based spectra deconvolution technique coupled to a sigmoidal transition model for the potential dependence of the main components in the spectra shows the surface transformation to be a two-stage process. The first stage was observed together with the first appearance of Ge-H stretching modes in the spectra and is attributed to the formation of a mixed surface termination. This transition was reversible. The second stage occurs at potentials ≈0.1-0.3 V negative of the first one, shows a hysteresis in potential, and is attributed to the formation of a surface with maximum Ge-H coverage. During the surface transformation, the surface becomes hydrophobic, and an effective desolvation layer, a "hydrophobic gap," developed with a thickness ≈1-3 Å. The largest thickness was observed near neutral pH. Interfacial water IR spectra show a loss of strongly hydrogen-bound water molecules compared to bulk water after the surface transformation, and the appearance of "free," non-hydrogen bound OH groups, throughout the entire pH range. Near neutral pH at negative electrode potentials, large changes at wavenumbers below 1000 cm-1 were observed. Librational modes of water contribute to the observed changes, indicating large changes in the water structure.

7.
Biophys J ; 111(10): 2162-2175, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-27851940

RESUMEN

A system based on two designed peptides, namely the cationic peptide K, (KIAALKE)3, and its complementary anionic counterpart called peptide E, (EIAALEK)3, has been used as a minimal model for membrane fusion, inspired by SNARE proteins. Although the fact that docking of separate vesicle populations via the formation of a dimeric E/K coiled-coil complex can be rationalized, the reasons for the peptides promoting fusion of vesicles cannot be fully explained. Therefore it is of significant interest to determine how the peptides aid in overcoming energetic barriers during lipid rearrangements leading to fusion. In this study, investigations of the peptides' interactions with neutral PC/PE/cholesterol membranes by fluorescence spectroscopy show that tryptophan-labeled K∗ binds to the membrane (KK∗ ∼6.2 103 M-1), whereas E∗ remains fully water-solvated. 15N-NMR spectroscopy, depth-dependent fluorescence quenching, CD-spectroscopy experiments, and MD simulations indicate a helix orientation of K∗ parallel to the membrane surface. Solid-state 31P-NMR of oriented lipid membranes was used to study the impact of peptide incorporation on lipid headgroup alignment. The membrane-immersed K∗ is found to locally alter the bilayer curvature, accompanied by a change of headgroup orientation relative to the membrane normal and of the lipid composition in the vicinity of the bound peptide. The NMR results were supported by molecular dynamics simulations, which showed that K reorganizes the membrane composition in its vicinity, induces positive membrane curvature, and enhances the lipid tail protrusion probability. These effects are known to be fusion relevant. The combined results support the hypothesis for a twofold role of K in the mechanism of membrane fusion: 1) to bring opposing membranes into close proximity via coiled-coil formation and 2) to destabilize both membranes thereby promoting fusion.


Asunto(s)
Membrana Dobles de Lípidos/metabolismo , Fusión de Membrana , Péptidos/química , Péptidos/metabolismo , Secuencia de Aminoácidos , Membrana Celular/química , Membrana Celular/metabolismo , Membrana Dobles de Lípidos/química , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica
8.
J Neurol Neurosurg Psychiatry ; 87(9): 993-9, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27010616

RESUMEN

BACKGROUND: Development of new therapies for Alzheimer's disease (AD) is increasingly focused on more mildly affected populations, and requires new assessment and outcome strategies. Patients in early stages of AD have mild cognitive decline and no, or limited, functional impairment. To respond to these assessment challenges, we developed a measurement approach based on established scale items that exhibited change in previous amnestic Mild Cognitive Impairment (aMCI) trials. METHODS: Partial least squares regression with a longitudinal clinical decline model identified items from commonly used clinical scales with the highest combined sensitivity to change over time in aMCI and weighted these items according to their relative contribution to detecting clinical progression in patients' early stages of AD. The resultant AD Composite Score (ADCOMS) was assessed for its ability to detect treatment effect in aMCI/prodromal AD (pAD) clinical trial populations. RESULTS: ADCOMS consists of 4 Alzheimer's Disease Assessment Scale-cognitive subscale items, 2 Mini-Mental State Examination items, and all 6 Clinical Dementia Rating-Sum of Boxes items. ADCOMS demonstrated improved sensitivity to clinical decline over individual scales in pAD, aMCI and in mild AD dementia. ADCOMS also detected treatment effects associated with the use of cholinesterase inhibitors in these populations. Improved sensitivity predicts smaller sample size requirements when ADCOMS is used in early AD trials. CONCLUSIONS: ADCOMS is proposed as new standard outcome for pAD and mild AD dementia trials, and is progressing in a CAMD-sponsored qualification process for use in registration trials of pAD.


Asunto(s)
Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/diagnóstico , Disfunción Cognitiva/diagnóstico , Progresión de la Enfermedad , Anciano , Péptidos beta-Amiloides , Biomarcadores/líquido cefalorraquídeo , Femenino , Humanos , Análisis de los Mínimos Cuadrados , Masculino , Escalas de Valoración Psiquiátrica
9.
Biomacromolecules ; 17(2): 631-40, 2016 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-26752598

RESUMEN

The self-assembly of the macrophage-activating lipopeptide MALP-2 in aqueous solution has been investigated and is compared to that of the constituent peptide GNNDESNISFKEK. MALP-2 is a toll-like receptor agonist lipopeptide with diverse potential biomedical applications and its self-assembly has not previously been examined. It is found to self-assemble, above a critical aggregation concentration (cac), into remarkable "fibre raft" structures, based on lateral aggregation of ß-sheet based bilayer tapes. Peptide GNNDESNISFKEK also forms ß-sheet structures above a cac, although the morphology is distinct, comprising highly extended and twisted tape structures. A detailed insight into the molecular packing within the MALP-2 raft and GNNDESNISFKEK nanotape structures is obtained through X-ray diffraction and small-angle X-ray scattering. These results point to the significant influence of the attached lipid chains on the self-assembly motif, which lead to the raft structure for the lipopeptide assemblies.


Asunto(s)
Lipopéptidos/química , Fragmentos de Péptidos/química , Secuencia de Aminoácidos , Datos de Secuencia Molecular , Multimerización de Proteína , Dispersión del Ángulo Pequeño , Difracción de Rayos X
10.
Biopolymers ; 104(2): 65-72, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25471538

RESUMEN

In their native form peptides are often found as oligomeric complexes, meaning they consist of more than one peptide chain. Coiled coils and helical bundles are common examples of such complexes. Their oligomeric state needs to be known precisely as this tremendously influences their biochemical and biophysical properties. The extensive analysis of circular dichroism spectroscopic data is commonly used to investigate the thermodynamics of binding and folding of these complexes. Here we present FitDis! an easy-to-use programme, which fits the most common two-state unfolding transition to the measured thermal unfolding curves of any oligomer of any stoichiometry. We demonstrate, with simulated and real examples, that the comparison of different stoichiometric models fitted to the same dataset reveals the oligomeric states of these complexes along with detailed thermodynamic information. This method will significantly ease the analysis of and increase the amount of information gained from, the thermal unfolding curves of peptide complexes.


Asunto(s)
Péptidos/química , Programas Informáticos , Dicroismo Circular , Pliegue de Proteína , Estructura Secundaria de Proteína , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA