Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Asunto principal
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 116(24): 11640-11645, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31138693

RESUMEN

Northern hemisphere evergreen forests assimilate a significant fraction of global atmospheric CO2 but monitoring large-scale changes in gross primary production (GPP) in these systems is challenging. Recent advances in remote sensing allow the detection of solar-induced chlorophyll fluorescence (SIF) emission from vegetation, which has been empirically linked to GPP at large spatial scales. This is particularly important in evergreen forests, where traditional remote-sensing techniques and terrestrial biosphere models fail to reproduce the seasonality of GPP. Here, we examined the mechanistic relationship between SIF retrieved from a canopy spectrometer system and GPP at a winter-dormant conifer forest, which has little seasonal variation in canopy structure, needle chlorophyll content, and absorbed light. Both SIF and GPP track each other in a consistent, dynamic fashion in response to environmental conditions. SIF and GPP are well correlated (R2 = 0.62-0.92) with an invariant slope over hourly to weekly timescales. Large seasonal variations in SIF yield capture changes in photoprotective pigments and photosystem II operating efficiency associated with winter acclimation, highlighting its unique ability to precisely track the seasonality of photosynthesis. Our results underscore the potential of new satellite-based SIF products (TROPOMI, OCO-2) as proxies for the timing and magnitude of GPP in evergreen forests at an unprecedented spatiotemporal resolution.


Asunto(s)
Fotosíntesis/fisiología , Ciclo del Carbono/fisiología , Clorofila/fisiología , Clima , Ecosistema , Monitoreo del Ambiente/métodos , Fluorescencia , Bosques , Complejo de Proteína del Fotosistema II/fisiología , Estaciones del Año , Luz Solar
2.
J Adv Model Earth Syst ; 13(7): e2020MS002421, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34434490

RESUMEN

The Western United States is dominated by natural lands that play a critical role for carbon balance, water quality, and timber reserves. This region is also particularly vulnerable to forest mortality from drought, insect attack, and wildfires, thus requiring constant monitoring to assess ecosystem health. Carbon monitoring techniques are challenged by the complex mountainous terrain, thus there is an opportunity for data assimilation systems that combine land surface models and satellite-derived observations to provide improved carbon monitoring. Here, we use the Data Assimilation Research Testbed to adjust the Community Land Model (CLM5.0) with remotely sensed observations of leaf area and above-ground biomass. The adjusted simulation significantly reduced the above-ground biomass and leaf area, leading to a reduction in both photosynthesis and respiration fluxes. The reduction in the carbon fluxes mostly offset, thus both the adjusted and free simulation projected a weak carbon sink to the land. This result differed from a separate observation-constrained model (FLUXCOM) that projected strong carbon uptake to the land. Simulation diagnostics suggested water limitation had an important influence upon the magnitude and spatial pattern of carbon uptake through photosynthesis. We recommend that additional observations important for water cycling (e.g., snow water equivalent, land surface temperature) be included to improve the veracity of the spatial pattern in carbon uptake. Furthermore, the assimilation system should be enhanced to maximize the number of the simulated state variables that are adjusted, especially those related to the recommended observed quantities including water cycling and soil carbon.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA